gfl_head.py 18.7 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import numpy as np
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant

from ppdet.core.workspace import register
from ppdet.modeling.layers import ConvNormLayer
from ppdet.modeling.bbox_utils import distance2bbox, bbox2distance
from ppdet.data.transform.atss_assigner import bbox_overlaps


class ScaleReg(nn.Layer):
    """
    Parameter for scaling the regression outputs.
    """

    def __init__(self):
        super(ScaleReg, self).__init__()
        self.scale_reg = self.create_parameter(
            shape=[1],
            attr=ParamAttr(initializer=Constant(value=1.)),
            dtype="float32")

    def forward(self, inputs):
        out = inputs * self.scale_reg
        return out


class Integral(nn.Layer):
    """A fixed layer for calculating integral result from distribution.
    This layer calculates the target location by :math: `sum{P(y_i) * y_i}`,
    P(y_i) denotes the softmax vector that represents the discrete distribution
    y_i denotes the discrete set, usually {0, 1, 2, ..., reg_max}

    Args:
        reg_max (int): The maximal value of the discrete set. Default: 16. You
            may want to reset it according to your new dataset or related
            settings.
    """

    def __init__(self, reg_max=16):
        super(Integral, self).__init__()
        self.reg_max = reg_max
        self.register_buffer('project',
                             paddle.linspace(0, self.reg_max, self.reg_max + 1))

    def forward(self, x):
        """Forward feature from the regression head to get integral result of
        bounding box location.
        Args:
            x (Tensor): Features of the regression head, shape (N, 4*(n+1)),
                n is self.reg_max.
        Returns:
            x (Tensor): Integral result of box locations, i.e., distance
                offsets from the box center in four directions, shape (N, 4).
        """
        x = F.softmax(x.reshape([-1, self.reg_max + 1]), axis=1)
        x = F.linear(x, self.project).reshape([-1, 4])
        return x


@register
class DGQP(nn.Layer):
    """Distribution-Guided Quality Predictor of GFocal head

    Args:
        reg_topk (int): top-k statistics of distribution to guide LQE
        reg_channels (int): hidden layer unit to generate LQE
        add_mean (bool): Whether to calculate the mean of top-k statistics
    """

    def __init__(self, reg_topk=4, reg_channels=64, add_mean=True):
        super(DGQP, self).__init__()
        self.reg_topk = reg_topk
        self.reg_channels = reg_channels
        self.add_mean = add_mean
        self.total_dim = reg_topk
        if add_mean:
            self.total_dim += 1
        self.reg_conv1 = self.add_sublayer(
            'dgqp_reg_conv1',
            nn.Conv2D(
                in_channels=4 * self.total_dim,
                out_channels=self.reg_channels,
                kernel_size=1,
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(value=0))))
        self.reg_conv2 = self.add_sublayer(
            'dgqp_reg_conv2',
            nn.Conv2D(
                in_channels=self.reg_channels,
                out_channels=1,
                kernel_size=1,
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(value=0))))

    def forward(self, x):
        """Forward feature from the regression head to get integral result of
        bounding box location.
        Args:
            x (Tensor): Features of the regression head, shape (N, 4*(n+1)),
                n is self.reg_max.
        Returns:
            x (Tensor): Integral result of box locations, i.e., distance
                offsets from the box center in four directions, shape (N, 4).
        """
        N, _, H, W = x.shape[:]
        prob = F.softmax(x.reshape([N, 4, -1, H, W]), axis=2)
        prob_topk, _ = prob.topk(self.reg_topk, axis=2)
        if self.add_mean:
            stat = paddle.concat(
                [prob_topk, prob_topk.mean(
                    axis=2, keepdim=True)], axis=2)
        else:
            stat = prob_topk
        y = F.relu(self.reg_conv1(stat.reshape([N, -1, H, W])))
        y = F.sigmoid(self.reg_conv2(y))
        return y


@register
class GFLHead(nn.Layer):
    """
    GFLHead
    Args:
        conv_feat (object): Instance of 'FCOSFeat'
        num_classes (int): Number of classes
        fpn_stride (list): The stride of each FPN Layer
        prior_prob (float): Used to set the bias init for the class prediction layer
        loss_qfl (object):
        loss_dfl (object):
        loss_bbox (object):
        reg_max: Max value of integral set :math: `{0, ..., reg_max}`
                n QFL setting. Default: 16.
    """
    __inject__ = [
        'conv_feat', 'dgqp_module', 'loss_qfl', 'loss_dfl', 'loss_bbox', 'nms'
    ]
    __shared__ = ['num_classes']

    def __init__(self,
                 conv_feat='FCOSFeat',
                 dgqp_module=None,
                 num_classes=80,
                 fpn_stride=[8, 16, 32, 64, 128],
                 prior_prob=0.01,
                 loss_qfl='QualityFocalLoss',
                 loss_dfl='DistributionFocalLoss',
                 loss_bbox='GIoULoss',
                 reg_max=16,
                 feat_in_chan=256,
                 nms=None,
                 nms_pre=1000,
                 cell_offset=0):
        super(GFLHead, self).__init__()
        self.conv_feat = conv_feat
        self.dgqp_module = dgqp_module
        self.num_classes = num_classes
        self.fpn_stride = fpn_stride
        self.prior_prob = prior_prob
        self.loss_qfl = loss_qfl
        self.loss_dfl = loss_dfl
        self.loss_bbox = loss_bbox
        self.reg_max = reg_max
        self.feat_in_chan = feat_in_chan
        self.nms = nms
        self.nms_pre = nms_pre
        self.cell_offset = cell_offset
        self.use_sigmoid = self.loss_qfl.use_sigmoid
        if self.use_sigmoid:
            self.cls_out_channels = self.num_classes
        else:
            self.cls_out_channels = self.num_classes + 1

        conv_cls_name = "gfl_head_cls"
        bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
        self.gfl_head_cls = self.add_sublayer(
            conv_cls_name,
            nn.Conv2D(
                in_channels=self.feat_in_chan,
                out_channels=self.cls_out_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
                bias_attr=ParamAttr(
                    initializer=Constant(value=bias_init_value))))

        conv_reg_name = "gfl_head_reg"
        self.gfl_head_reg = self.add_sublayer(
            conv_reg_name,
            nn.Conv2D(
                in_channels=self.feat_in_chan,
                out_channels=4 * (self.reg_max + 1),
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(value=0))))

        self.scales_regs = []
        for i in range(len(self.fpn_stride)):
            lvl = int(math.log(int(self.fpn_stride[i]), 2))
            feat_name = 'p{}_feat'.format(lvl)
            scale_reg = self.add_sublayer(feat_name, ScaleReg())
            self.scales_regs.append(scale_reg)

        self.distribution_project = Integral(self.reg_max)

    def forward(self, fpn_feats):
        assert len(fpn_feats) == len(
            self.fpn_stride
        ), "The size of fpn_feats is not equal to size of fpn_stride"
        cls_logits_list = []
        bboxes_reg_list = []
        for scale_reg, fpn_feat in zip(self.scales_regs, fpn_feats):
            conv_cls_feat, conv_reg_feat = self.conv_feat(fpn_feat)
            cls_logits = self.gfl_head_cls(conv_cls_feat)
            bbox_reg = scale_reg(self.gfl_head_reg(conv_reg_feat))
            if self.dgqp_module:
                quality_score = self.dgqp_module(bbox_reg)
                cls_logits = F.sigmoid(cls_logits) * quality_score
            cls_logits_list.append(cls_logits)
            bboxes_reg_list.append(bbox_reg)

        return (cls_logits_list, bboxes_reg_list)

    def _images_to_levels(self, target, num_level_anchors):
        """
        Convert targets by image to targets by feature level.
        """
        level_targets = []
        start = 0
        for n in num_level_anchors:
            end = start + n
            level_targets.append(target[:, start:end].squeeze(0))
            start = end
        return level_targets

    def _grid_cells_to_center(self, grid_cells):
        """
        Get center location of each gird cell
        Args:
            grid_cells: grid cells of a feature map
        Returns:
            center points
        """
        cells_cx = (grid_cells[:, 2] + grid_cells[:, 0]) / 2
        cells_cy = (grid_cells[:, 3] + grid_cells[:, 1]) / 2
        return paddle.stack([cells_cx, cells_cy], axis=-1)

    def get_loss(self, gfl_head_outs, gt_meta):
        cls_logits, bboxes_reg = gfl_head_outs
        num_level_anchors = [
            featmap.shape[-2] * featmap.shape[-1] for featmap in cls_logits
        ]
        grid_cells_list = self._images_to_levels(gt_meta['grid_cells'],
                                                 num_level_anchors)
        labels_list = self._images_to_levels(gt_meta['labels'],
                                             num_level_anchors)
        label_weights_list = self._images_to_levels(gt_meta['label_weights'],
                                                    num_level_anchors)
        bbox_targets_list = self._images_to_levels(gt_meta['bbox_targets'],
                                                   num_level_anchors)
        num_total_pos = sum(gt_meta['pos_num'])

        loss_bbox_list, loss_dfl_list, loss_qfl_list, avg_factor = [], [], [], []
        for cls_score, bbox_pred, grid_cells, labels, label_weights, bbox_targets, stride in zip(
                cls_logits, bboxes_reg, grid_cells_list, labels_list,
                label_weights_list, bbox_targets_list, self.fpn_stride):
            grid_cells = grid_cells.reshape([-1, 4])
            cls_score = cls_score.transpose([0, 2, 3, 1]).reshape(
                [-1, self.cls_out_channels])
            bbox_pred = bbox_pred.transpose([0, 2, 3, 1]).reshape(
                [-1, 4 * (self.reg_max + 1)])
            bbox_targets = bbox_targets.reshape([-1, 4])
            labels = labels.reshape([-1])
            label_weights = label_weights.reshape([-1])

            bg_class_ind = self.num_classes
            pos_inds = paddle.nonzero(
                paddle.logical_and((labels >= 0), (labels < bg_class_ind)),
                as_tuple=False).squeeze(1)
            score = np.zeros(labels.shape)
            if len(pos_inds) > 0:
                pos_bbox_targets = paddle.gather(bbox_targets, pos_inds, axis=0)
                pos_bbox_pred = paddle.gather(bbox_pred, pos_inds, axis=0)
                pos_grid_cells = paddle.gather(grid_cells, pos_inds, axis=0)
                pos_grid_cell_centers = self._grid_cells_to_center(
                    pos_grid_cells) / stride

                weight_targets = F.sigmoid(cls_score.detach())
                weight_targets = paddle.gather(
                    weight_targets.max(axis=1), pos_inds, axis=0)
                pos_bbox_pred_corners = self.distribution_project(pos_bbox_pred)
                pos_decode_bbox_pred = distance2bbox(pos_grid_cell_centers,
                                                     pos_bbox_pred_corners)
                pos_decode_bbox_targets = pos_bbox_targets / stride
                bbox_iou = bbox_overlaps(
                    pos_decode_bbox_pred.detach().numpy(),
                    pos_decode_bbox_targets.detach().numpy(),
                    is_aligned=True)
                score[pos_inds.numpy()] = bbox_iou
                pred_corners = pos_bbox_pred.reshape([-1, self.reg_max + 1])
                target_corners = bbox2distance(pos_grid_cell_centers,
                                               pos_decode_bbox_targets,
                                               self.reg_max).reshape([-1])
                # regression loss
                loss_bbox = paddle.sum(
                    self.loss_bbox(pos_decode_bbox_pred,
                                   pos_decode_bbox_targets) *
                    weight_targets.mean(axis=-1))

                # dfl loss
                loss_dfl = self.loss_dfl(
                    pred_corners,
                    target_corners,
                    weight=weight_targets.unsqueeze(-1).expand([-1, 4]).reshape(
                        [-1]),
                    avg_factor=4.0)
            else:
                loss_bbox = bbox_pred.sum() * 0
                loss_dfl = bbox_pred.sum() * 0
                weight_targets = paddle.to_tensor([0])

            # qfl loss
            score = paddle.to_tensor(score)
            loss_qfl = self.loss_qfl(
                cls_score, (labels, score),
                weight=label_weights,
                avg_factor=num_total_pos)
            loss_bbox_list.append(loss_bbox)
            loss_dfl_list.append(loss_dfl)
            loss_qfl_list.append(loss_qfl)
            avg_factor.append(weight_targets.sum())

        avg_factor = sum(avg_factor)
        if avg_factor <= 0:
            loss_qfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
            loss_bbox = paddle.to_tensor(
                0, dtype='float32', stop_gradient=False)
            loss_dfl = paddle.to_tensor(0, dtype='float32', stop_gradient=False)
        else:
            losses_bbox = list(map(lambda x: x / avg_factor, loss_bbox_list))
            losses_dfl = list(map(lambda x: x / avg_factor, loss_dfl_list))
            loss_qfl = sum(loss_qfl_list)
            loss_bbox = sum(losses_bbox)
            loss_dfl = sum(losses_dfl)

        loss_states = dict(
            loss_qfl=loss_qfl, loss_bbox=loss_bbox, loss_dfl=loss_dfl)

        return loss_states

    def get_single_level_center_point(self, featmap_size, stride,
                                      cell_offset=0):
        """
        Generate pixel centers of a single stage feature map.
        Args:
            featmap_size: height and width of the feature map
            stride: down sample stride of the feature map
        Returns:
            y and x of the center points
        """
        h, w = featmap_size
        x_range = (paddle.arange(w, dtype='float32') + cell_offset) * stride
        y_range = (paddle.arange(h, dtype='float32') + cell_offset) * stride
        y, x = paddle.meshgrid(y_range, x_range)
        y = y.flatten()
        x = x.flatten()
        return y, x

    def get_bboxes_single(self,
                          cls_scores,
                          bbox_preds,
                          img_shape,
                          scale_factor,
                          rescale=True,
                          cell_offset=0):
        assert len(cls_scores) == len(bbox_preds)
        mlvl_bboxes = []
        mlvl_scores = []
        for stride, cls_score, bbox_pred in zip(self.fpn_stride, cls_scores,
                                                bbox_preds):
            featmap_size = cls_score.shape[-2:]
            y, x = self.get_single_level_center_point(
                featmap_size, stride, cell_offset=cell_offset)
            center_points = paddle.stack([x, y], axis=-1)
            scores = F.sigmoid(
                cls_score.transpose([1, 2, 0]).reshape(
                    [-1, self.cls_out_channels]))
            bbox_pred = bbox_pred.transpose([1, 2, 0])
            bbox_pred = self.distribution_project(bbox_pred) * stride

            if scores.shape[0] > self.nms_pre:
                max_scores = scores.max(axis=1)
                _, topk_inds = max_scores.topk(self.nms_pre)
                center_points = center_points.gather(topk_inds)
                bbox_pred = bbox_pred.gather(topk_inds)
                scores = scores.gather(topk_inds)

            bboxes = distance2bbox(
                center_points, bbox_pred, max_shape=img_shape)
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)
        mlvl_bboxes = paddle.concat(mlvl_bboxes)
        if rescale:
            # [h_scale, w_scale] to [w_scale, h_scale, w_scale, h_scale]
            im_scale = paddle.concat([scale_factor[::-1], scale_factor[::-1]])
            mlvl_bboxes /= im_scale
        mlvl_scores = paddle.concat(mlvl_scores)
        if self.use_sigmoid:
            # add a dummy background class to the backend when use_sigmoid
            padding = paddle.zeros([mlvl_scores.shape[0], 1])
            mlvl_scores = paddle.concat([mlvl_scores, padding], axis=1)
        mlvl_scores = mlvl_scores.transpose([1, 0])
        return mlvl_bboxes, mlvl_scores

    def decode(self, cls_scores, bbox_preds, im_shape, scale_factor,
               cell_offset):
        batch_bboxes = []
        batch_scores = []
        for img_id in range(cls_scores[0].shape[0]):
            num_levels = len(cls_scores)
            cls_score_list = [cls_scores[i][img_id] for i in range(num_levels)]
            bbox_pred_list = [bbox_preds[i][img_id] for i in range(num_levels)]
            bboxes, scores = self.get_bboxes_single(
                cls_score_list,
                bbox_pred_list,
                im_shape[img_id],
                scale_factor[img_id],
                cell_offset=cell_offset)
            batch_bboxes.append(bboxes)
            batch_scores.append(scores)
        batch_bboxes = paddle.stack(batch_bboxes, axis=0)
        batch_scores = paddle.stack(batch_scores, axis=0)

        return batch_bboxes, batch_scores

    def post_process(self, gfl_head_outs, im_shape, scale_factor):
        cls_scores, bboxes_reg = gfl_head_outs
        bboxes, score = self.decode(cls_scores, bboxes_reg, im_shape,
                                    scale_factor, self.cell_offset)
        bbox_pred, bbox_num, _ = self.nms(bboxes, score)
        return bbox_pred, bbox_num