eval.py 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

W
wangguanzhong 已提交
21

22 23 24 25 26
def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)

W
wangguanzhong 已提交
27

28 29 30 31 32 33
# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

34 35
import paddle.fluid as fluid

36
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results, json_eval_results
37
import ppdet.utils.checkpoint as checkpoint
38
from ppdet.utils.check import check_gpu
39 40 41
from ppdet.modeling.model_input import create_feed
from ppdet.data.data_feed import create_reader
from ppdet.core.workspace import load_config, merge_config, create
Y
Yang Zhang 已提交
42 43
from ppdet.utils.cli import print_total_cfg
from ppdet.utils.cli import ArgsParser
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def main():
    """
    Main evaluate function
    """
    cfg = load_config(FLAGS.config)
    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)
62 63
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)
W
wangguanzhong 已提交
64
    print_total_cfg(cfg)
65

66 67 68 69 70
    if 'eval_feed' not in cfg:
        eval_feed = create(main_arch + 'EvalFeed')
    else:
        eval_feed = create(cfg.eval_feed)

W
wangguanzhong 已提交
71 72
    multi_scale_test = getattr(cfg, 'MultiScaleTEST', None)

73 74 75 76 77 78 79 80 81 82
    # define executor
    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    # build program
    model = create(main_arch)
    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
83
            pyreader, feed_vars = create_feed(eval_feed)
84 85 86 87
            if multi_scale_test is None:
                fetches = model.eval(feed_vars)
            else:
                fetches = model.eval(feed_vars, multi_scale_test)
88
    eval_prog = eval_prog.clone(True)
W
wangguanzhong 已提交
89
    reader = create_reader(eval_feed, args_path=FLAGS.dataset_dir)
90
    pyreader.decorate_sample_list_generator(reader, place)
91

92 93
    # eval already exists json file
    if FLAGS.json_eval:
94 95 96 97
        logger.info(
            "In json_eval mode, PaddleDetection will evaluate json files in "
            "output_eval directly. And proposal.json, bbox.json and mask.json "
            "will be detected by default.")
W
wangguanzhong 已提交
98 99
        json_eval_results(
            eval_feed, cfg.metric, json_directory=FLAGS.output_eval)
100
        return
101 102 103

    compile_program = fluid.compiler.CompiledProgram(
        eval_prog).with_data_parallel()
104 105 106 107

    # load model
    exe.run(startup_prog)
    if 'weights' in cfg:
108
        checkpoint.load_params(exe, eval_prog, cfg.weights)
109

110 111
    assert cfg.metric in ['COCO', 'VOC'], \
            "unknown metric type {}".format(cfg.metric)
112
    extra_keys = []
113
    if cfg.metric == 'COCO':
114
        extra_keys = ['im_info', 'im_id', 'im_shape']
115 116
    if cfg.metric == 'VOC':
        extra_keys = ['gt_box', 'gt_label', 'is_difficult']
117 118 119

    keys, values, cls = parse_fetches(fetches, eval_prog, extra_keys)

120 121 122 123 124 125
    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

W
wangguanzhong 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    sub_eval_prog = None
    sub_keys = None
    sub_values = None
    # build sub-program
    if 'Mask' in main_arch and multi_scale_test:
        sub_eval_prog = fluid.Program()
        with fluid.program_guard(sub_eval_prog, startup_prog):
            with fluid.unique_name.guard():
                _, feed_vars = create_feed(
                    eval_feed, use_pyreader=False, sub_prog_feed=True)
                sub_fetches = model.eval(
                    feed_vars, multi_scale_test, mask_branch=True)
                extra_keys = []
                if cfg.metric == 'COCO':
                    extra_keys = ['im_id', 'im_shape']
                if cfg.metric == 'VOC':
                    extra_keys = ['gt_box', 'gt_label', 'is_difficult']
        sub_keys, sub_values, _ = parse_fetches(sub_fetches, sub_eval_prog,
                                                extra_keys)
        sub_eval_prog = sub_eval_prog.clone(True)

        if 'weights' in cfg:
            checkpoint.load_params(exe, sub_eval_prog, cfg.weights)

    results = eval_run(exe, compile_program, pyreader, keys, values, cls, cfg,
                       sub_eval_prog, sub_keys, sub_values)
152

153 154 155 156
    # evaluation
    resolution = None
    if 'mask' in results[0]:
        resolution = model.mask_head.resolution
K
Kaipeng Deng 已提交
157 158
    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'
W
wangguanzhong 已提交
159
    eval_results(results, eval_feed, cfg.metric, cfg.num_classes, resolution,
K
Kaipeng Deng 已提交
160
                 is_bbox_normalized, FLAGS.output_eval, map_type)
161

W
wangguanzhong 已提交
162

163 164 165
if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
166 167 168 169
        "--json_eval",
        action='store_true',
        default=False,
        help="Whether to re eval with already exists bbox.json or mask.json")
W
wangguanzhong 已提交
170 171 172 173 174 175
    parser.add_argument(
        "-d",
        "--dataset_dir",
        default=None,
        type=str,
        help="Dataset path, same as DataFeed.dataset.dataset_dir")
176
    parser.add_argument(
W
wangguanzhong 已提交
177
        "-f",
178 179 180 181
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation file directory, default is current directory.")
182 183
    FLAGS = parser.parse_args()
    main()