README.md 2.7 KB
Newer Older
G
Guanghua Yu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# SOLOv2 for instance segmentation

## Introduction

SOLOv2 (Segmenting Objects by Locations) is a fast instance segmentation framework with strong performance. We reproduced the model of the paper, and improved and optimized the accuracy and speed of the SOLOv2.

**Highlights:**

- Training Time: The training time of the model of `solov2_r50_fpn_1x` on Tesla v100 with 8 GPU is only 10 hours.

## Model Zoo

| Detector  | Backbone                | Multi-scale training  | Lr schd |  Mask AP<sup>val</sup> |  V100 FP32(FPS) |    GPU  |    Download                  | Configs |
| :-------: | :---------------------: | :-------------------: | :-----: | :--------------------: | :-------------: | :-----: | :---------: | :------------------------: |
| YOLACT++  |  R50-FPN    | False      |  80w iter     |   34.1 (test-dev) |  33.5  | Xp |  -  |  -   |
| CenterMask | R50-FPN | True        |   2x    |     36.4        |  13.9  | Xp |   -  |  -  |
| CenterMask | V2-99-FPN | True        |   3x    |     40.2       |  8.9  | Xp |   -  |  -  |
| PolarMask | R50-FPN | True        |   2x    |     30.5        |  9.4  | V100 |   -  |  -  |
| BlendMask | R50-FPN | True        |   3x    |     37.8        |  13.5  | V100 |   -  |  -  |
| SOLOv2 (Paper) | R50-FPN | False        |   1x    |     34.8        |  18.5  | V100 |   -  |  -  |
| SOLOv2 (Paper) | X101-DCN-FPN | True        |   3x    |     42.4        |  5.9  | V100 |   -  |  -  |
22 23
| SOLOv2 | R50-FPN                 |  False                |   1x    |    35.5         |  21.9     | V100 |  [model](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_1x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/solov2/solov2_r50_fpn_1x_coco.yml) |
| SOLOv2 | R50-FPN                 |  True                |   3x    |     38.0         |   21.9    | V100 |  [model](https://paddledet.bj.bcebos.com/models/solov2_r50_fpn_3x_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/solov2/solov2_r50_fpn_3x_coco.yml) |
G
Guanghua Yu 已提交
24 25 26 27

**Notes:**

- SOLOv2 is trained on COCO train2017 dataset and evaluated on val2017 results of `mAP(IoU=0.5:0.95)`.
K
Kaipeng Deng 已提交
28
- SOLOv2 training performace is dependented on Paddle develop branch, performance reproduction shoule based on [Paddle daily version](https://www.paddlepaddle.org.cn/documentation/docs/zh/install/Tables.html#whl-dev) or Paddle 2.0.1(will be published on 2021.03), performace will loss slightly is training base on Paddle 2.0.0
G
Guanghua Yu 已提交
29 30 31 32 33 34 35 36 37 38

## Citations
```
@article{wang2020solov2,
  title={SOLOv2: Dynamic, Faster and Stronger},
  author={Wang, Xinlong and Zhang, Rufeng and  Kong, Tao and Li, Lei and Shen, Chunhua},
  journal={arXiv preprint arXiv:2003.10152},
  year={2020}
}
```