s2anet_head.py 34.7 KB
Newer Older
C
cnn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from ppdet.core.workspace import register
20
from ppdet.modeling import ops
C
cnn 已提交
21 22 23 24 25
from ppdet.modeling import bbox_utils
from ppdet.modeling.proposal_generator.target_layer import RBoxAssigner
import numpy as np


C
cnn 已提交
26
class S2ANetAnchorGenerator(nn.Layer):
C
cnn 已提交
27
    """
C
cnn 已提交
28
    AnchorGenerator by paddle
C
cnn 已提交
29 30
    """

C
cnn 已提交
31 32
    def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None):
        super(S2ANetAnchorGenerator, self).__init__()
C
cnn 已提交
33
        self.base_size = base_size
C
cnn 已提交
34 35
        self.scales = paddle.to_tensor(scales)
        self.ratios = paddle.to_tensor(ratios)
C
cnn 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
        self.scale_major = scale_major
        self.ctr = ctr
        self.base_anchors = self.gen_base_anchors()

    @property
    def num_base_anchors(self):
        return self.base_anchors.shape[0]

    def gen_base_anchors(self):
        w = self.base_size
        h = self.base_size
        if self.ctr is None:
            x_ctr = 0.5 * (w - 1)
            y_ctr = 0.5 * (h - 1)
        else:
            x_ctr, y_ctr = self.ctr

C
cnn 已提交
53
        h_ratios = paddle.sqrt(self.ratios)
C
cnn 已提交
54 55 56 57 58 59 60 61
        w_ratios = 1 / h_ratios
        if self.scale_major:
            ws = (w * w_ratios[:] * self.scales[:]).reshape([-1])
            hs = (h * h_ratios[:] * self.scales[:]).reshape([-1])
        else:
            ws = (w * self.scales[:] * w_ratios[:]).reshape([-1])
            hs = (h * self.scales[:] * h_ratios[:]).reshape([-1])

C
cnn 已提交
62
        base_anchors = paddle.stack(
C
cnn 已提交
63 64 65 66 67
            [
                x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1),
                x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1)
            ],
            axis=-1)
C
cnn 已提交
68
        base_anchors = paddle.round(base_anchors)
C
cnn 已提交
69 70 71
        return base_anchors

    def _meshgrid(self, x, y, row_major=True):
C
cnn 已提交
72 73 74
        yy, xx = paddle.meshgrid(x, y)
        yy = yy.reshape([-1])
        xx = xx.reshape([-1])
C
cnn 已提交
75 76 77 78 79
        if row_major:
            return xx, yy
        else:
            return yy, xx

C
cnn 已提交
80
    def forward(self, featmap_size, stride=16):
C
cnn 已提交
81
        # featmap_size*stride project it to original area
C
cnn 已提交
82 83 84 85 86

        feat_h = featmap_size[0]
        feat_w = featmap_size[1]
        shift_x = paddle.arange(0, feat_w, 1, 'int32') * stride
        shift_y = paddle.arange(0, feat_h, 1, 'int32') * stride
C
cnn 已提交
87
        shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
C
cnn 已提交
88
        shifts = paddle.stack([shift_xx, shift_yy, shift_xx, shift_yy], axis=-1)
C
cnn 已提交
89

C
cnn 已提交
90 91
        all_anchors = self.base_anchors[:, :] + shifts[:, :]
        all_anchors = all_anchors.reshape([feat_h * feat_w, 4])
C
cnn 已提交
92 93 94 95 96 97
        return all_anchors

    def valid_flags(self, featmap_size, valid_size):
        feat_h, feat_w = featmap_size
        valid_h, valid_w = valid_size
        assert valid_h <= feat_h and valid_w <= feat_w
C
cnn 已提交
98 99
        valid_x = paddle.zeros([feat_w], dtype='int32')
        valid_y = paddle.zeros([feat_h], dtype='int32')
C
cnn 已提交
100 101 102 103
        valid_x[:valid_w] = 1
        valid_y[:valid_h] = 1
        valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
        valid = valid_xx & valid_yy
C
cnn 已提交
104 105 106
        valid = paddle.reshape(valid, [-1, 1])
        valid = paddle.expand(valid,
            [-1, self.num_base_anchors]).reshape([-1])
C
cnn 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
        return valid


class AlignConv(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size=3, groups=1):
        super(AlignConv, self).__init__()
        self.kernel_size = kernel_size
        self.align_conv = paddle.vision.ops.DeformConv2D(
            in_channels,
            out_channels,
            kernel_size=self.kernel_size,
            padding=(self.kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
            bias_attr=None)

    @paddle.no_grad()
    def get_offset(self, anchors, featmap_size, stride):
        """
        Args:
            anchors: [M,5] xc,yc,w,h,angle
            featmap_size: (feat_h, feat_w)
            stride: 8
        Returns:

        """
        anchors = paddle.reshape(anchors, [-1, 5])  # (NA,5)
        dtype = anchors.dtype
C
cnn 已提交
135 136
        feat_h = featmap_size[0]
        feat_w = featmap_size[1]
C
cnn 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
        pad = (self.kernel_size - 1) // 2
        idx = paddle.arange(-pad, pad + 1, dtype=dtype)

        yy, xx = paddle.meshgrid(idx, idx)
        xx = paddle.reshape(xx, [-1])
        yy = paddle.reshape(yy, [-1])

        # get sampling locations of default conv
        xc = paddle.arange(0, feat_w, dtype=dtype)
        yc = paddle.arange(0, feat_h, dtype=dtype)
        yc, xc = paddle.meshgrid(yc, xc)

        xc = paddle.reshape(xc, [-1, 1])
        yc = paddle.reshape(yc, [-1, 1])
        x_conv = xc + xx
        y_conv = yc + yy

        # get sampling locations of anchors
        # x_ctr, y_ctr, w, h, a = np.unbind(anchors, dim=1)
        x_ctr = anchors[:, 0]
        y_ctr = anchors[:, 1]
        w = anchors[:, 2]
        h = anchors[:, 3]
        a = anchors[:, 4]

C
cnn 已提交
162 163 164 165 166
        x_ctr = paddle.reshape(x_ctr, [-1, 1])
        y_ctr = paddle.reshape(y_ctr, [-1, 1])
        w = paddle.reshape(w, [-1, 1])
        h = paddle.reshape(h, [-1, 1])
        a = paddle.reshape(a, [-1, 1])
C
cnn 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181

        x_ctr = x_ctr / stride
        y_ctr = y_ctr / stride
        w_s = w / stride
        h_s = h / stride
        cos, sin = paddle.cos(a), paddle.sin(a)
        dw, dh = w_s / self.kernel_size, h_s / self.kernel_size
        x, y = dw * xx, dh * yy
        xr = cos * x - sin * y
        yr = sin * x + cos * y
        x_anchor, y_anchor = xr + x_ctr, yr + y_ctr
        # get offset filed
        offset_x = x_anchor - x_conv
        offset_y = y_anchor - y_conv
        offset = paddle.stack([offset_y, offset_x], axis=-1)
C
cnn 已提交
182
        offset = paddle.reshape(offset, [feat_h * feat_w, self.kernel_size * self.kernel_size * 2])                    
C
cnn 已提交
183
        offset = paddle.transpose(offset, [1, 0])
C
cnn 已提交
184
        offset = paddle.reshape(offset, [1, self.kernel_size * self.kernel_size * 2, feat_h, feat_w]) 
C
cnn 已提交
185 186
        return offset

C
cnn 已提交
187
    def forward(self, x, refine_anchors, featmap_size, stride):
C
cnn 已提交
188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
        offset = self.get_offset(refine_anchors, featmap_size, stride)
        x = F.relu(self.align_conv(x, offset))
        return x


@register
class S2ANetHead(nn.Layer):
    """
    S2Anet head
    Args:
        stacked_convs (int): number of stacked_convs
        feat_in (int): input channels of feat
        feat_out (int): output channels of feat
        num_classes (int): num_classes
        anchor_strides (list): stride of anchors
        anchor_scales (list): scale of anchors
        anchor_ratios (list): ratios of anchors
        target_means (list): target_means
        target_stds (list): target_stds
        align_conv_type (str): align_conv_type ['Conv', 'AlignConv']
        align_conv_size (int): kernel size of align_conv
        use_sigmoid_cls (bool): use sigmoid_cls or not
C
cnn 已提交
210
        reg_loss_weight (list): loss weight for regression
C
cnn 已提交
211 212 213 214 215 216 217 218 219 220 221 222
    """
    __shared__ = ['num_classes']
    __inject__ = ['anchor_assign']

    def __init__(self,
                 stacked_convs=2,
                 feat_in=256,
                 feat_out=256,
                 num_classes=15,
                 anchor_strides=[8, 16, 32, 64, 128],
                 anchor_scales=[4],
                 anchor_ratios=[1.0],
C
cnn 已提交
223 224
                 target_means=0.0,
                 target_stds=1.0,
C
cnn 已提交
225 226 227 228
                 align_conv_type='AlignConv',
                 align_conv_size=3,
                 use_sigmoid_cls=True,
                 anchor_assign=RBoxAssigner().__dict__,
229
                 reg_loss_weight=[1.0, 1.0, 1.0, 1.0, 1.0],
C
cnn 已提交
230 231
                 cls_loss_weight=[1.0, 1.0],
                 reg_loss_type='l1'):
C
cnn 已提交
232 233 234 235 236 237 238 239
        super(S2ANetHead, self).__init__()
        self.stacked_convs = stacked_convs
        self.feat_in = feat_in
        self.feat_out = feat_out
        self.anchor_list = None
        self.anchor_scales = anchor_scales
        self.anchor_ratios = anchor_ratios
        self.anchor_strides = anchor_strides
C
cnn 已提交
240
        self.anchor_strides = paddle.to_tensor(anchor_strides)
C
cnn 已提交
241
        self.anchor_base_sizes = list(anchor_strides)
C
cnn 已提交
242 243
        self.means = paddle.ones(shape=[5]) * target_means
        self.stds = paddle.ones(shape=[5]) * target_stds
C
cnn 已提交
244
        assert align_conv_type in ['AlignConv', 'Conv', 'DCN']
C
cnn 已提交
245 246 247 248 249 250 251 252
        self.align_conv_type = align_conv_type
        self.align_conv_size = align_conv_size

        self.use_sigmoid_cls = use_sigmoid_cls
        self.cls_out_channels = num_classes if self.use_sigmoid_cls else 1
        self.sampling = False
        self.anchor_assign = anchor_assign
        self.reg_loss_weight = reg_loss_weight
253
        self.cls_loss_weight = cls_loss_weight
C
cnn 已提交
254 255 256
        self.alpha = 1.0
        self.beta = 1.0
        self.reg_loss_type = reg_loss_type
C
cnn 已提交
257 258 259 260 261 262

        self.s2anet_head_out = None

        # anchor
        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
C
cnn 已提交
263 264 265
                self.anchor_generators.append(
                    S2ANetAnchorGenerator(anchor_base, anchor_scales,
                                          anchor_ratios))
C
cnn 已提交
266

C
cnn 已提交
267
        self.anchor_generators = nn.LayerList(self.anchor_generators)
C
cnn 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
        self.fam_cls_convs = nn.Sequential()
        self.fam_reg_convs = nn.Sequential()

        for i in range(self.stacked_convs):
            chan_in = self.feat_in if i == 0 else self.feat_out

            self.fam_cls_convs.add_sublayer(
                'fam_cls_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=chan_in,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.fam_cls_convs.add_sublayer('fam_cls_conv_{}_act'.format(i),
                                            nn.ReLU())

            self.fam_reg_convs.add_sublayer(
                'fam_reg_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=chan_in,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.fam_reg_convs.add_sublayer('fam_reg_conv_{}_act'.format(i),
                                            nn.ReLU())

        self.fam_reg = nn.Conv2D(
            self.feat_out,
            5,
            1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(0)))
        prior_prob = 0.01
        bias_init = float(-np.log((1 - prior_prob) / prior_prob))
        self.fam_cls = nn.Conv2D(
            self.feat_out,
            self.cls_out_channels,
            1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(bias_init)))

        if self.align_conv_type == "AlignConv":
            self.align_conv = AlignConv(self.feat_out, self.feat_out,
                                        self.align_conv_size)
        elif self.align_conv_type == "Conv":
            self.align_conv = nn.Conv2D(
                self.feat_out,
                self.feat_out,
                self.align_conv_size,
                padding=(self.align_conv_size - 1) // 2,
                bias_attr=ParamAttr(initializer=Constant(0)))

C
cnn 已提交
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
        elif self.align_conv_type == "DCN":
            self.align_conv_offset = nn.Conv2D(
                self.feat_out,
                2 * self.align_conv_size**2,
                1,
                weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                bias_attr=ParamAttr(initializer=Constant(0)))

            self.align_conv = paddle.vision.ops.DeformConv2D(
                self.feat_out,
                self.feat_out,
                self.align_conv_size,
                padding=(self.align_conv_size - 1) // 2,
                weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                bias_attr=False)

C
cnn 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400
        self.or_conv = nn.Conv2D(
            self.feat_out,
            self.feat_out,
            kernel_size=3,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(0)))

        # ODM
        self.odm_cls_convs = nn.Sequential()
        self.odm_reg_convs = nn.Sequential()

        for i in range(self.stacked_convs):
            ch_in = self.feat_out
            # ch_in = int(self.feat_out / 8) if i == 0 else self.feat_out

            self.odm_cls_convs.add_sublayer(
                'odm_cls_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=ch_in,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.odm_cls_convs.add_sublayer('odm_cls_conv_{}_act'.format(i),
                                            nn.ReLU())

            self.odm_reg_convs.add_sublayer(
                'odm_reg_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=self.feat_out,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.odm_reg_convs.add_sublayer('odm_reg_conv_{}_act'.format(i),
                                            nn.ReLU())

        self.odm_cls = nn.Conv2D(
            self.feat_out,
            self.cls_out_channels,
            3,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(bias_init)))
        self.odm_reg = nn.Conv2D(
            self.feat_out,
            5,
            3,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(0)))

C
cnn 已提交
401 402
        self.featmap_sizes = []
        self.base_anchors_list = []
C
cnn 已提交
403 404
        self.refine_anchor_list = []

C
cnn 已提交
405 406 407 408 409 410 411
    def forward(self, feats):
        fam_reg_branch_list = []
        fam_cls_branch_list = []

        odm_reg_branch_list = []
        odm_cls_branch_list = []

C
cnn 已提交
412 413
        self.featmap_sizes_list = []
        self.base_anchors_list = []
C
cnn 已提交
414 415
        self.refine_anchor_list = []

C
cnn 已提交
416 417
        for feat_idx in range(len(feats)):
            feat = feats[feat_idx]
C
cnn 已提交
418
            fam_cls_feat = self.fam_cls_convs(feat)
419

C
cnn 已提交
420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
            fam_cls = self.fam_cls(fam_cls_feat)
            # [N, CLS, H, W] --> [N, H, W, CLS]
            fam_cls = fam_cls.transpose([0, 2, 3, 1])
            fam_cls_reshape = paddle.reshape(
                fam_cls, [fam_cls.shape[0], -1, self.cls_out_channels])
            fam_cls_branch_list.append(fam_cls_reshape)

            fam_reg_feat = self.fam_reg_convs(feat)

            fam_reg = self.fam_reg(fam_reg_feat)
            # [N, 5, H, W] --> [N, H, W, 5]
            fam_reg = fam_reg.transpose([0, 2, 3, 1])
            fam_reg_reshape = paddle.reshape(fam_reg, [fam_reg.shape[0], -1, 5])
            fam_reg_branch_list.append(fam_reg_reshape)

435
            # prepare anchor
C
cnn 已提交
436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
            featmap_size = (paddle.shape(feat)[2], paddle.shape(feat)[3])
            self.featmap_sizes_list.append(featmap_size)
            init_anchors = self.anchor_generators[feat_idx](
                featmap_size, self.anchor_strides[feat_idx])

            init_anchors = paddle.to_tensor(init_anchors, dtype='float32')
            NA = featmap_size[0] * featmap_size[1]
            init_anchors = paddle.reshape(
                init_anchors, [NA, 4])
            init_anchors = self.rect2rbox(init_anchors)
            self.base_anchors_list.append(init_anchors)

            fam_reg1 = fam_reg
            fam_reg1.stop_gradient = True
            refine_anchor = self.bbox_decode(fam_reg1, init_anchors)
            #refine_anchor = self.bbox_decode(fam_reg.detach(), init_anchors)
452

C
cnn 已提交
453 454 455 456 457
            self.refine_anchor_list.append(refine_anchor)

            if self.align_conv_type == 'AlignConv':
                align_feat = self.align_conv(feat,
                                             refine_anchor.clone(),
C
cnn 已提交
458 459
                                             featmap_size,
                                             self.anchor_strides[feat_idx])
C
cnn 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
            elif self.align_conv_type == 'DCN':
                align_offset = self.align_conv_offset(feat)
                align_feat = self.align_conv(feat, align_offset)
            elif self.align_conv_type == 'Conv':
                align_feat = self.align_conv(feat)

            or_feat = self.or_conv(align_feat)
            odm_reg_feat = or_feat
            odm_cls_feat = or_feat

            odm_reg_feat = self.odm_reg_convs(odm_reg_feat)
            odm_cls_feat = self.odm_cls_convs(odm_cls_feat)

            odm_cls_score = self.odm_cls(odm_cls_feat)
            # [N, CLS, H, W] --> [N, H, W, CLS]
            odm_cls_score = odm_cls_score.transpose([0, 2, 3, 1])
C
cnn 已提交
476
            odm_cls_score_shape = odm_cls_score.shape
C
cnn 已提交
477 478
            odm_cls_score_reshape = paddle.reshape(
                odm_cls_score,
C
cnn 已提交
479
                [odm_cls_score_shape[0], odm_cls_score_shape[1] * odm_cls_score_shape[2], self.cls_out_channels])
C
cnn 已提交
480 481 482 483 484 485 486

            odm_cls_branch_list.append(odm_cls_score_reshape)

            odm_bbox_pred = self.odm_reg(odm_reg_feat)
            # [N, 5, H, W] --> [N, H, W, 5]
            odm_bbox_pred = odm_bbox_pred.transpose([0, 2, 3, 1])
            odm_bbox_pred_reshape = paddle.reshape(
C
cnn 已提交
487 488
                odm_bbox_pred, [-1, 5])
            odm_bbox_pred_reshape = paddle.unsqueeze(odm_bbox_pred_reshape, axis=0)
C
cnn 已提交
489 490 491 492 493 494
            odm_reg_branch_list.append(odm_bbox_pred_reshape)

        self.s2anet_head_out = (fam_cls_branch_list, fam_reg_branch_list,
                                odm_cls_branch_list, odm_reg_branch_list)
        return self.s2anet_head_out

C
cnn 已提交
495
    def get_prediction(self, nms_pre=2000):
C
cnn 已提交
496
        refine_anchors = self.refine_anchor_list
C
cnn 已提交
497 498 499 500
        fam_cls_branch_list = self.s2anet_head_out[0]
        fam_reg_branch_list = self.s2anet_head_out[1]
        odm_cls_branch_list = self.s2anet_head_out[2]
        odm_reg_branch_list = self.s2anet_head_out[3]
C
cnn 已提交
501 502 503 504 505
        pred_scores, pred_bboxes = self.get_bboxes(
            odm_cls_branch_list,
            odm_reg_branch_list,
            refine_anchors,
            nms_pre,
C
cnn 已提交
506 507
            self.cls_out_channels,
            self.use_sigmoid_cls)
C
cnn 已提交
508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
        return pred_scores, pred_bboxes

    def smooth_l1_loss(self, pred, label, delta=1.0 / 9.0):
        """
        Args:
            pred: pred score
            label: label
            delta: delta
        Returns: loss
        """
        assert pred.shape == label.shape and label.numel() > 0
        assert delta > 0
        diff = paddle.abs(pred - label)
        loss = paddle.where(diff < delta, 0.5 * diff * diff / delta,
                            diff - 0.5 * delta)
        return loss

C
cnn 已提交
525
    def get_fam_loss(self, fam_target, s2anet_head_out, reg_loss_type='gwd'):
526 527 528 529 530 531 532
        (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
         neg_inds) = fam_target
        fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out

        fam_cls_losses = []
        fam_bbox_losses = []
        st_idx = 0
C
cnn 已提交
533 534 535 536
        num_total_samples = len(pos_inds) + len(
            neg_inds) if self.sampling else len(pos_inds)
        num_total_samples = max(1, num_total_samples)

C
cnn 已提交
537
        for idx, feat_size in enumerate(self.featmap_sizes_list):
538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
            feat_anchor_num = feat_size[0] * feat_size[1]

            # step1:  get data
            feat_labels = labels[st_idx:st_idx + feat_anchor_num]
            feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]

            feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
            feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
            st_idx += feat_anchor_num

            # step2: calc cls loss
            feat_labels = feat_labels.reshape(-1)
            feat_label_weights = feat_label_weights.reshape(-1)

            fam_cls_score = fam_cls_branch_list[idx]
            fam_cls_score = paddle.squeeze(fam_cls_score, axis=0)
            fam_cls_score1 = fam_cls_score

            feat_labels = paddle.to_tensor(feat_labels)
            feat_labels_one_hot = paddle.nn.functional.one_hot(
                feat_labels, self.cls_out_channels + 1)
            feat_labels_one_hot = feat_labels_one_hot[:, 1:]
            feat_labels_one_hot.stop_gradient = True

            num_total_samples = paddle.to_tensor(
                num_total_samples, dtype='float32', stop_gradient=True)

            fam_cls = F.sigmoid_focal_loss(
                fam_cls_score1,
                feat_labels_one_hot,
                normalizer=num_total_samples,
                reduction='none')

            feat_label_weights = feat_label_weights.reshape(
                feat_label_weights.shape[0], 1)
            feat_label_weights = np.repeat(
                feat_label_weights, self.cls_out_channels, axis=1)
            feat_label_weights = paddle.to_tensor(
                feat_label_weights, stop_gradient=True)

            fam_cls = fam_cls * feat_label_weights
            fam_cls_total = paddle.sum(fam_cls)
            fam_cls_losses.append(fam_cls_total)

            # step3: regression loss
            fam_bbox_pred = fam_reg_branch_list[idx]
            feat_bbox_targets = paddle.to_tensor(
                feat_bbox_targets, dtype='float32', stop_gradient=True)
            feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])

            fam_bbox_pred = fam_reg_branch_list[idx]
            fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0)
            fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5])
            fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
C
cnn 已提交
592 593 594 595 596 597 598 599 600 601 602

            # iou_factor
            if reg_loss_type == 'l1':
                fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
                loss_weight = paddle.to_tensor(
                    self.reg_loss_weight, dtype='float32', stop_gradient=True)
                fam_bbox = paddle.multiply(fam_bbox, loss_weight)
                feat_bbox_weights = paddle.to_tensor(
                    feat_bbox_weights, stop_gradient=True)
                fam_bbox = fam_bbox * feat_bbox_weights
                fam_bbox_total = paddle.sum(fam_bbox) / num_total_samples
603 604 605 606

            fam_bbox_losses.append(fam_bbox_total)

        fam_cls_loss = paddle.add_n(fam_cls_losses)
607 608
        fam_cls_loss_weight = paddle.to_tensor(
            self.cls_loss_weight[0], dtype='float32', stop_gradient=True)
609 610
        fam_cls_loss = fam_cls_loss * fam_cls_loss_weight
        fam_reg_loss = paddle.add_n(fam_bbox_losses)
C
cnn 已提交
611 612
        return fam_cls_loss, fam_reg_loss

C
cnn 已提交
613
    def get_odm_loss(self, odm_target, s2anet_head_out, reg_loss_type='gwd'):
614 615 616 617 618 619 620
        (labels, label_weights, bbox_targets, bbox_weights, pos_inds,
         neg_inds) = odm_target
        fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = s2anet_head_out

        odm_cls_losses = []
        odm_bbox_losses = []
        st_idx = 0
C
cnn 已提交
621 622 623
        num_total_samples = len(pos_inds) + len(
            neg_inds) if self.sampling else len(pos_inds)
        num_total_samples = max(1, num_total_samples)
C
cnn 已提交
624 625
        
        for idx, feat_size in enumerate(self.featmap_sizes_list):
626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678
            feat_anchor_num = feat_size[0] * feat_size[1]

            # step1:  get data
            feat_labels = labels[st_idx:st_idx + feat_anchor_num]
            feat_label_weights = label_weights[st_idx:st_idx + feat_anchor_num]

            feat_bbox_targets = bbox_targets[st_idx:st_idx + feat_anchor_num, :]
            feat_bbox_weights = bbox_weights[st_idx:st_idx + feat_anchor_num, :]
            st_idx += feat_anchor_num

            # step2: calc cls loss
            feat_labels = feat_labels.reshape(-1)
            feat_label_weights = feat_label_weights.reshape(-1)

            odm_cls_score = odm_cls_branch_list[idx]
            odm_cls_score = paddle.squeeze(odm_cls_score, axis=0)
            odm_cls_score1 = odm_cls_score

            feat_labels = paddle.to_tensor(feat_labels)
            feat_labels_one_hot = paddle.nn.functional.one_hot(
                feat_labels, self.cls_out_channels + 1)
            feat_labels_one_hot = feat_labels_one_hot[:, 1:]
            feat_labels_one_hot.stop_gradient = True

            num_total_samples = paddle.to_tensor(
                num_total_samples, dtype='float32', stop_gradient=True)
            odm_cls = F.sigmoid_focal_loss(
                odm_cls_score1,
                feat_labels_one_hot,
                normalizer=num_total_samples,
                reduction='none')

            feat_label_weights = feat_label_weights.reshape(
                feat_label_weights.shape[0], 1)
            feat_label_weights = np.repeat(
                feat_label_weights, self.cls_out_channels, axis=1)
            feat_label_weights = paddle.to_tensor(feat_label_weights)
            feat_label_weights.stop_gradient = True

            odm_cls = odm_cls * feat_label_weights
            odm_cls_total = paddle.sum(odm_cls)
            odm_cls_losses.append(odm_cls_total)

            # # step3: regression loss
            feat_bbox_targets = paddle.to_tensor(
                feat_bbox_targets, dtype='float32')
            feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
            feat_bbox_targets.stop_gradient = True

            odm_bbox_pred = odm_reg_branch_list[idx]
            odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0)
            odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
            odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
C
cnn 已提交
679 680 681 682 683 684 685 686 687 688 689 690
            
            # iou_factor odm not use_iou                             
            if reg_loss_type == 'l1':
                odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
                loss_weight = paddle.to_tensor(
                    self.reg_loss_weight, dtype='float32', stop_gradient=True)
                odm_bbox = paddle.multiply(odm_bbox, loss_weight)
                feat_bbox_weights = paddle.to_tensor(
                    feat_bbox_weights, stop_gradient=True)
                odm_bbox = odm_bbox * feat_bbox_weights
                odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples
            
691 692 693
            odm_bbox_losses.append(odm_bbox_total)

        odm_cls_loss = paddle.add_n(odm_cls_losses)
694
        odm_cls_loss_weight = paddle.to_tensor(
695 696 697
            self.cls_loss_weight[1], dtype='float32', stop_gradient=True)
        odm_cls_loss = odm_cls_loss * odm_cls_loss_weight
        odm_reg_loss = paddle.add_n(odm_bbox_losses)
C
cnn 已提交
698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718
        return odm_cls_loss, odm_reg_loss

    def get_loss(self, inputs):
        # inputs: im_id image im_shape scale_factor gt_bbox gt_class is_crowd

        # compute loss
        fam_cls_loss_lst = []
        fam_reg_loss_lst = []
        odm_cls_loss_lst = []
        odm_reg_loss_lst = []

        im_shape = inputs['im_shape']
        for im_id in range(im_shape.shape[0]):
            np_im_shape = inputs['im_shape'][im_id].numpy()
            np_scale_factor = inputs['scale_factor'][im_id].numpy()
            # data_format: (xc, yc, w, h, theta)
            gt_bboxes = inputs['gt_rbox'][im_id].numpy()
            gt_labels = inputs['gt_class'][im_id].numpy()
            is_crowd = inputs['is_crowd'][im_id].numpy()
            gt_labels = gt_labels + 1

719
            # featmap_sizes
C
cnn 已提交
720
            anchors_list_all = np.concatenate(self.base_anchors_list)
721 722 723 724 725 726 727 728 729

            # get im_feat
            fam_cls_feats_list = [e[im_id] for e in self.s2anet_head_out[0]]
            fam_reg_feats_list = [e[im_id] for e in self.s2anet_head_out[1]]
            odm_cls_feats_list = [e[im_id] for e in self.s2anet_head_out[2]]
            odm_reg_feats_list = [e[im_id] for e in self.s2anet_head_out[3]]
            im_s2anet_head_out = (fam_cls_feats_list, fam_reg_feats_list,
                                  odm_cls_feats_list, odm_reg_feats_list)

C
cnn 已提交
730
            # FAM
731 732 733
            im_fam_target = self.anchor_assign(anchors_list_all, gt_bboxes,
                                               gt_labels, is_crowd)
            if im_fam_target is not None:
C
cnn 已提交
734
                im_fam_cls_loss, im_fam_reg_loss = self.get_fam_loss(
C
cnn 已提交
735
                    im_fam_target, im_s2anet_head_out, self.reg_loss_type)
C
cnn 已提交
736 737 738 739
                fam_cls_loss_lst.append(im_fam_cls_loss)
                fam_reg_loss_lst.append(im_fam_reg_loss)

            # ODM
C
cnn 已提交
740 741 742 743
            np_refine_anchors_list  = paddle.concat(self.refine_anchor_list).numpy()
            np_refine_anchors_list = np.concatenate(np_refine_anchors_list)
            np_refine_anchors_list = np_refine_anchors_list.reshape(-1, 5)
            im_odm_target = self.anchor_assign(np_refine_anchors_list, gt_bboxes,
744
                                               gt_labels, is_crowd)
C
cnn 已提交
745

746
            if im_odm_target is not None:
C
cnn 已提交
747
                im_odm_cls_loss, im_odm_reg_loss = self.get_odm_loss(
C
cnn 已提交
748
                    im_odm_target, im_s2anet_head_out, self.reg_loss_type)
C
cnn 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794
                odm_cls_loss_lst.append(im_odm_cls_loss)
                odm_reg_loss_lst.append(im_odm_reg_loss)
        fam_cls_loss = paddle.add_n(fam_cls_loss_lst)
        fam_reg_loss = paddle.add_n(fam_reg_loss_lst)
        odm_cls_loss = paddle.add_n(odm_cls_loss_lst)
        odm_reg_loss = paddle.add_n(odm_reg_loss_lst)
        return {
            'fam_cls_loss': fam_cls_loss,
            'fam_reg_loss': fam_reg_loss,
            'odm_cls_loss': odm_cls_loss,
            'odm_reg_loss': odm_reg_loss
        }

    def get_bboxes(self, cls_score_list, bbox_pred_list, mlvl_anchors, nms_pre,
                   cls_out_channels, use_sigmoid_cls):
        assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors)

        mlvl_bboxes = []
        mlvl_scores = []

        idx = 0
        for cls_score, bbox_pred, anchors in zip(cls_score_list, bbox_pred_list,
                                                 mlvl_anchors):
            cls_score = paddle.reshape(cls_score, [-1, cls_out_channels])
            if use_sigmoid_cls:
                scores = F.sigmoid(cls_score)
            else:
                scores = F.softmax(cls_score, axis=-1)

            # bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 5)
            bbox_pred = paddle.transpose(bbox_pred, [1, 2, 0])
            bbox_pred = paddle.reshape(bbox_pred, [-1, 5])
            anchors = paddle.reshape(anchors, [-1, 5])

            if nms_pre > 0 and scores.shape[0] > nms_pre:
                # Get maximum scores for foreground classes.
                if use_sigmoid_cls:
                    max_scores = paddle.max(scores, axis=1)
                else:
                    max_scores = paddle.max(scores[:, 1:], axis=1)

                topk_val, topk_inds = paddle.topk(max_scores, nms_pre)
                anchors = paddle.gather(anchors, topk_inds)
                bbox_pred = paddle.gather(bbox_pred, topk_inds)
                scores = paddle.gather(scores, topk_inds)

C
cnn 已提交
795 796
            bbox_delta = paddle.reshape(bbox_pred, [-1, 5])
            bboxes = self.delta2rbox(anchors, bbox_delta)
C
cnn 已提交
797 798 799 800 801 802 803 804 805
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)

            idx += 1

        mlvl_bboxes = paddle.concat(mlvl_bboxes, axis=0)
        mlvl_scores = paddle.concat(mlvl_scores)

        return mlvl_scores, mlvl_bboxes
C
cnn 已提交
806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888

    def rect2rbox(self, bboxes):
        """
        :param bboxes: shape (n, 4) (xmin, ymin, xmax, ymax)
        :return: dbboxes: shape (n, 5) (x_ctr, y_ctr, w, h, angle)
        """
        bboxes = paddle.reshape(bboxes, [-1, 4])
        num_boxes = paddle.shape(bboxes)[0]
        x_ctr = (bboxes[:, 2] + bboxes[:, 0]) / 2.0
        y_ctr = (bboxes[:, 3] + bboxes[:, 1]) / 2.0
        edges1 = paddle.abs(bboxes[:, 2] - bboxes[:, 0])
        edges2 = paddle.abs(bboxes[:, 3] - bboxes[:, 1])

        rbox_w = paddle.maximum(edges1, edges2)
        rbox_h = paddle.minimum(edges1, edges2)

        # set angle
        inds = edges1 < edges2
        inds = paddle.cast(inds, 'int32')
        rboxes_angle = inds * np.pi / 2.0

        rboxes = paddle.stack(
            (x_ctr, y_ctr, rbox_w, rbox_h, rboxes_angle), axis=1)
        return rboxes

    # deltas to rbox
    def delta2rbox(self, rrois, deltas, wh_ratio_clip=1e-6):
        """
        :param rrois: (cx, cy, w, h, theta)
        :param deltas: (dx, dy, dw, dh, dtheta)
        :param means: means of anchor
        :param stds: stds of anchor
        :param wh_ratio_clip: clip threshold of wh_ratio
        :return:
        """
        deltas = paddle.reshape(deltas, [-1, 5])
        rrois = paddle.reshape(rrois, [-1, 5])
        # fix dy2st bug denorm_deltas = deltas * self.stds + self.means
        denorm_deltas = paddle.add(paddle.multiply(deltas, self.stds), self.means)

        dx = denorm_deltas[:, 0]
        dy = denorm_deltas[:, 1]
        dw = denorm_deltas[:, 2]
        dh = denorm_deltas[:, 3]
        dangle = denorm_deltas[:, 4]
        max_ratio = np.abs(np.log(wh_ratio_clip))
        dw = paddle.clip(dw, min=-max_ratio, max=max_ratio)
        dh = paddle.clip(dh, min=-max_ratio, max=max_ratio)

        rroi_x = rrois[:, 0]
        rroi_y = rrois[:, 1]
        rroi_w = rrois[:, 2]
        rroi_h = rrois[:, 3]
        rroi_angle = rrois[:, 4]

        gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin(
            rroi_angle) + rroi_x
        gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos(
            rroi_angle) + rroi_y
        gw = rroi_w * dw.exp()
        gh = rroi_h * dh.exp()
        ga = np.pi * dangle + rroi_angle
        ga = (ga + np.pi / 4) % np.pi - np.pi / 4
        ga = paddle.to_tensor(ga)
        gw = paddle.to_tensor(gw, dtype='float32')
        gh = paddle.to_tensor(gh, dtype='float32')
        bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1)
        return bboxes

    def bbox_decode(self,
                bbox_preds,
                anchors):
        """decode bbox from deltas
        Args:
            bbox_preds: [N,H,W,5]
            anchors: [H*W,5]
        return:
            bboxes: [N,H,W,5]
        """
        num_imgs, H, W, _ = bbox_preds.shape
        bbox_delta = paddle.reshape(bbox_preds, [-1, 5])
        bboxes = self.delta2rbox(anchors, bbox_delta)
        return bboxes