vgg.py 6.4 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8
from __future__ import division

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn import Conv2D, MaxPool2D
from ppdet.core.workspace import register, serializable
9
from ..shape_spec import ShapeSpec
Q
qingqing01 已提交
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

__all__ = ['VGG']

VGG_cfg = {16: [2, 2, 3, 3, 3], 19: [2, 2, 4, 4, 4]}


class ConvBlock(nn.Layer):
    def __init__(self,
                 in_channels,
                 out_channels,
                 groups,
                 pool_size=2,
                 pool_stride=2,
                 pool_padding=0,
                 name=None):
        super(ConvBlock, self).__init__()

        self.groups = groups
        self.conv0 = nn.Conv2D(
            in_channels=in_channels,
            out_channels=out_channels,
            kernel_size=3,
            stride=1,
W
wangguanzhong 已提交
33
            padding=1)
Q
qingqing01 已提交
34 35 36 37 38 39 40 41 42
        self.conv_out_list = []
        for i in range(1, groups):
            conv_out = self.add_sublayer(
                'conv{}'.format(i),
                Conv2D(
                    in_channels=out_channels,
                    out_channels=out_channels,
                    kernel_size=3,
                    stride=1,
W
wangguanzhong 已提交
43
                    padding=1))
Q
qingqing01 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
            self.conv_out_list.append(conv_out)

        self.pool = MaxPool2D(
            kernel_size=pool_size,
            stride=pool_stride,
            padding=pool_padding,
            ceil_mode=True)

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = F.relu(out)
        for conv_i in self.conv_out_list:
            out = conv_i(out)
            out = F.relu(out)
        pool = self.pool(out)
        return out, pool


class ExtraBlock(nn.Layer):
    def __init__(self,
                 in_channels,
                 mid_channels,
                 out_channels,
                 padding,
                 stride,
                 kernel_size,
                 name=None):
        super(ExtraBlock, self).__init__()

        self.conv0 = Conv2D(
            in_channels=in_channels,
            out_channels=mid_channels,
            kernel_size=1,
            stride=1,
            padding=0)
        self.conv1 = Conv2D(
            in_channels=mid_channels,
            out_channels=out_channels,
            kernel_size=kernel_size,
            stride=stride,
            padding=padding)

    def forward(self, inputs):
        out = self.conv0(inputs)
        out = F.relu(out)
        out = self.conv1(out)
        out = F.relu(out)
        return out


class L2NormScale(nn.Layer):
    def __init__(self, num_channels, scale=1.0):
        super(L2NormScale, self).__init__()
        self.scale = self.create_parameter(
            attr=ParamAttr(initializer=paddle.nn.initializer.Constant(scale)),
            shape=[num_channels])

    def forward(self, inputs):
        out = F.normalize(inputs, axis=1, epsilon=1e-10)
        # out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3).expand_as(
        #     out) * out
        out = self.scale.unsqueeze(0).unsqueeze(2).unsqueeze(3) * out
        return out


@register
@serializable
class VGG(nn.Layer):
    def __init__(self,
                 depth=16,
                 normalizations=[20., -1, -1, -1, -1, -1],
                 extra_block_filters=[[256, 512, 1, 2, 3], [128, 256, 1, 2, 3],
                                      [128, 256, 0, 1, 3],
                                      [128, 256, 0, 1, 3]]):
        super(VGG, self).__init__()

        assert depth in [16, 19], \
                "depth as 16/19 supported currently, but got {}".format(depth)
        self.depth = depth
        self.groups = VGG_cfg[depth]
        self.normalizations = normalizations
        self.extra_block_filters = extra_block_filters

127 128
        self._out_channels = []

Q
qingqing01 已提交
129 130 131 132 133 134 135 136 137 138
        self.conv_block_0 = ConvBlock(
            3, 64, self.groups[0], 2, 2, 0, name="conv1_")
        self.conv_block_1 = ConvBlock(
            64, 128, self.groups[1], 2, 2, 0, name="conv2_")
        self.conv_block_2 = ConvBlock(
            128, 256, self.groups[2], 2, 2, 0, name="conv3_")
        self.conv_block_3 = ConvBlock(
            256, 512, self.groups[3], 2, 2, 0, name="conv4_")
        self.conv_block_4 = ConvBlock(
            512, 512, self.groups[4], 3, 1, 1, name="conv5_")
139
        self._out_channels.append(512)
Q
qingqing01 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153

        self.fc6 = Conv2D(
            in_channels=512,
            out_channels=1024,
            kernel_size=3,
            stride=1,
            padding=6,
            dilation=6)
        self.fc7 = Conv2D(
            in_channels=1024,
            out_channels=1024,
            kernel_size=1,
            stride=1,
            padding=0)
154
        self._out_channels.append(1024)
Q
qingqing01 已提交
155 156 157 158 159 160 161 162 163 164 165

        # extra block
        self.extra_convs = []
        last_channels = 1024
        for i, v in enumerate(self.extra_block_filters):
            assert len(v) == 5, "extra_block_filters size not fix"
            extra_conv = self.add_sublayer("conv{}".format(6 + i),
                                           ExtraBlock(last_channels, v[0], v[1],
                                                      v[2], v[3], v[4]))
            last_channels = v[1]
            self.extra_convs.append(extra_conv)
166
            self._out_channels.append(last_channels)
Q
qingqing01 已提交
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

        self.norms = []
        for i, n in enumerate(self.normalizations):
            if n != -1:
                norm = self.add_sublayer("norm{}".format(i),
                                         L2NormScale(
                                             self.extra_block_filters[i][1], n))
            else:
                norm = None
            self.norms.append(norm)

    def forward(self, inputs):
        outputs = []

        conv, pool = self.conv_block_0(inputs['image'])
        conv, pool = self.conv_block_1(pool)
        conv, pool = self.conv_block_2(pool)
        conv, pool = self.conv_block_3(pool)
        outputs.append(conv)

        conv, pool = self.conv_block_4(pool)
        out = self.fc6(pool)
        out = F.relu(out)
        out = self.fc7(out)
        out = F.relu(out)
        outputs.append(out)

        if not self.extra_block_filters:
195
            return outputs
Q
qingqing01 已提交
196 197 198 199 200 201 202 203 204 205 206

        # extra block
        for extra_conv in self.extra_convs:
            out = extra_conv(out)
            outputs.append(out)

        for i, n in enumerate(self.normalizations):
            if n != -1:
                outputs[i] = self.norms[i](outputs[i])

        return outputs
207 208 209 210

    @property
    def out_shape(self):
        return [ShapeSpec(channels=c) for c in self._out_channels]