checkpoint.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals

20
import errno
21 22
import os
import shutil
23
import tempfile
24
import time
25
import numpy as np
26
import re
27 28 29 30 31 32 33
import paddle.fluid as fluid

from .download import get_weights_path

import logging
logger = logging.getLogger(__name__)

W
wangguanzhong 已提交
34 35 36
__all__ = [
    'load_checkpoint',
    'load_and_fusebn',
37
    'load_params',
W
wangguanzhong 已提交
38 39
    'save',
]
40 41 42 43 44 45 46 47 48 49 50


def is_url(path):
    """
    Whether path is URL.
    Args:
        path (string): URL string or not.
    """
    return path.startswith('http://') or path.startswith('https://')


51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
def _get_weight_path(path):
    env = os.environ
    if 'PADDLE_TRAINERS_NUM' in env and 'PADDLE_TRAINER_ID' in env:
        trainer_id = int(env['PADDLE_TRAINER_ID'])
        num_trainers = int(env['PADDLE_TRAINERS_NUM'])
        if num_trainers <= 1:
            path = get_weights_path(path)
        else:
            from ppdet.utils.download import map_path, WEIGHTS_HOME
            weight_path = map_path(path, WEIGHTS_HOME)
            lock_path = weight_path + '.lock'
            if not os.path.exists(weight_path):
                try:
                    os.makedirs(os.path.dirname(weight_path))
                except OSError as e:
                    if e.errno != errno.EEXIST:
                        raise
                with open(lock_path, 'w'):  # touch    
                    os.utime(lock_path, None)
                if trainer_id == 0:
                    get_weights_path(path)
                    os.remove(lock_path)
                else:
                    while os.path.exists(lock_path):
                        time.sleep(1)
            path = weight_path
    else:
        path = get_weights_path(path)
    return path


82 83 84 85 86 87 88 89 90 91 92 93 94
def _load_state(path):
    if os.path.exists(path + '.pdopt'):
        # XXX another hack to ignore the optimizer state
        tmp = tempfile.mkdtemp()
        dst = os.path.join(tmp, os.path.basename(os.path.normpath(path)))
        shutil.copy(path + '.pdparams', dst + '.pdparams')
        state = fluid.io.load_program_state(dst)
        shutil.rmtree(tmp)
    else:
        state = fluid.io.load_program_state(path)
    return state


95
def load_params(exe, prog, path, ignore_params=[]):
96 97 98 99 100 101
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
102
        ignore_params (list): ignore variable to load when finetuning.
103
            It can be specified by finetune_exclude_pretrained_params 
104
            and the usage can refer to docs/advanced_tutorials/TRANSFER_LEARNING.md
105
    """
106

107
    if is_url(path):
108
        path = _get_weight_path(path)
109
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
110 111
        raise ValueError("Model pretrain path {} does not "
                         "exists.".format(path))
112

113
    logger.info('Loading parameters from {}...'.format(path))
114

115 116 117 118 119 120 121 122 123 124 125 126 127 128
    ignore_set = set()
    state = _load_state(path)

    # ignore the parameter which mismatch the shape 
    # between the model and pretrain weight.
    all_var_shape = {}
    for block in prog.blocks:
        for param in block.all_parameters():
            all_var_shape[param.name] = param.shape
    ignore_set.update([
        name for name, shape in all_var_shape.items()
        if name in state and shape != state[name].shape
    ])

129 130 131 132 133
    if ignore_params:
        all_var_names = [var.name for var in prog.list_vars()]
        ignore_list = filter(
            lambda var: any([re.match(name, var) for name in ignore_params]),
            all_var_names)
134
        ignore_set.update(list(ignore_list))
135

136 137
    if len(ignore_set) > 0:
        for k in ignore_set:
138
            if k in state:
139
                logger.warning('variable {} not used'.format(k))
140 141
                del state[k]
    fluid.io.set_program_state(prog, state)
142 143 144 145 146 147 148 149 150 151 152


def load_checkpoint(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): load weight to which Program object.
        path (string): URL string or loca model path.
    """
    if is_url(path):
153
        path = _get_weight_path(path)
154 155
    if not (os.path.isdir(path) or os.path.exists(path + '.pdparams')):
        raise ValueError("Model pretrain path {} does not "
156
                         "exists.".format(path))
157
    fluid.load(prog, path, executor=exe)
158 159


Q
qingqing01 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
def global_step(scope=None):
    """
    Load global step in scope.
    Args:
        scope (fluid.Scope): load global step from which scope. If None,
            from default global_scope().

    Returns:
        global step: int.
    """
    if scope is None:
        scope = fluid.global_scope()
    v = scope.find_var('@LR_DECAY_COUNTER@')
    step = np.array(v.get_tensor())[0] if v else 0
    return step


177 178 179 180 181 182 183 184 185 186 187
def save(exe, prog, path):
    """
    Load model from the given path.
    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
    if os.path.isdir(path):
        shutil.rmtree(path)
    logger.info('Save model to {}.'.format(path))
188
    fluid.save(prog, path)
189 190 191 192 193 194 195 196 197 198 199


def load_and_fusebn(exe, prog, path):
    """
    Fuse params of batch norm to scale and bias.

    Args:
        exe (fluid.Executor): The fluid.Executor object.
        prog (fluid.Program): save weight from which Program object.
        path (string): the path to save model.
    """
Q
qingqing01 已提交
200 201
    logger.info('Load model and fuse batch norm if have from {}...'.format(
        path))
202

203
    if is_url(path):
204
        path = _get_weight_path(path)
205

206 207 208
    if not os.path.exists(path):
        raise ValueError("Model path {} does not exists.".format(path))

209 210 211 212 213 214 215 216 217 218
    # Since the program uses affine-channel, there is no running mean and var
    # in the program, here append running mean and var.
    # NOTE, the params of batch norm should be like:
    #  x_scale
    #  x_offset
    #  x_mean
    #  x_variance
    #  x is any prefix
    mean_variances = set()
    bn_vars = []
219
    state = _load_state(path)
220 221 222 223

    def check_mean_and_bias(prefix):
        m = prefix + 'mean'
        v = prefix + 'variance'
224
        return v in state and m in state
225 226

    has_mean_bias = True
227

228
    with fluid.program_guard(prog, fluid.Program()):
229 230
        for block in prog.blocks:
            ops = list(block.ops)
231
            if not has_mean_bias:
232 233 234 235 236 237 238 239 240
                break
            for op in ops:
                if op.type == 'affine_channel':
                    # remove 'scale' as prefix
                    scale_name = op.input('Scale')[0]  # _scale
                    bias_name = op.input('Bias')[0]  # _offset
                    prefix = scale_name[:-5]
                    mean_name = prefix + 'mean'
                    variance_name = prefix + 'variance'
241 242
                    if not check_mean_and_bias(prefix):
                        has_mean_bias = False
243 244 245
                        break

                    bias = block.var(bias_name)
246

247
                    mean_vb = block.create_var(
248 249 250
                        name=mean_name,
                        type=bias.type,
                        shape=bias.shape,
251 252
                        dtype=bias.dtype)
                    variance_vb = block.create_var(
253 254 255
                        name=variance_name,
                        type=bias.type,
                        shape=bias.shape,
256
                        dtype=bias.dtype)
257

258 259 260 261 262 263
                    mean_variances.add(mean_vb)
                    mean_variances.add(variance_vb)

                    bn_vars.append(
                        [scale_name, bias_name, mean_name, variance_name])

264
    if not has_mean_bias:
265
        fluid.io.set_program_state(prog, state)
Q
qingqing01 已提交
266 267 268 269
        logger.warning(
            "There is no paramters of batch norm in model {}. "
            "Skip to fuse batch norm. And load paramters done.".format(path))
        return
270

271
    fluid.load(prog, path, exe)
272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    eps = 1e-5
    for names in bn_vars:
        scale_name, bias_name, mean_name, var_name = names

        scale = fluid.global_scope().find_var(scale_name).get_tensor()
        bias = fluid.global_scope().find_var(bias_name).get_tensor()
        mean = fluid.global_scope().find_var(mean_name).get_tensor()
        var = fluid.global_scope().find_var(var_name).get_tensor()

        scale_arr = np.array(scale)
        bias_arr = np.array(bias)
        mean_arr = np.array(mean)
        var_arr = np.array(var)

        bn_std = np.sqrt(np.add(var_arr, eps))
        new_scale = np.float32(np.divide(scale_arr, bn_std))
        new_bias = bias_arr - mean_arr * new_scale

        # fuse to scale and bias in affine_channel
        scale.set(new_scale, exe.place)
        bias.set(new_bias, exe.place)