test.sh 16.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
MODE=$2

dataline=$(cat ${FILENAME})

# parser params
IFS=$'\n'
lines=(${dataline})

function func_parser_key(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[0]}
    echo ${tmp}
}
function func_parser_value(){
    strs=$1
    IFS=":"
    array=(${strs})
    tmp=${array[1]}
    echo ${tmp}
}
function func_set_params(){
    key=$1
    value=$2
    if [ ${key} = "null" ];then
        echo " "
    elif [[ ${value} = "null" ]] || [[ ${value} = " " ]] || [ ${#value} -le 0 ];then
        echo " "
    else
        echo "${key}=${value}"
    fi
}
function func_parser_params(){
    strs=$1
    IFS=":"
    array=(${strs})
    key=${array[0]}
    tmp=${array[1]}
    IFS="|"
    res=""
    for _params in ${tmp[*]}; do
        IFS="="
        array=(${_params})
        mode=${array[0]}
        value=${array[1]}
        if [[ ${mode} = ${MODE} ]]; then
            IFS="|"
            #echo $(func_set_params "${mode}" "${value}")
            echo $value
            break
        fi
        IFS="|"
    done
    echo ${res}
}
function status_check(){
    last_status=$1   # the exit code
    run_command=$2
    run_log=$3
    if [ $last_status -eq 0 ]; then
        echo -e "\033[33m Run successfully with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    else
        echo -e "\033[33m Run failed with command - ${run_command}!  \033[0m" | tee -a ${run_log}
    fi
}

IFS=$'\n'
# The training params
model_name=$(func_parser_value "${lines[1]}")
python=$(func_parser_value "${lines[2]}")
gpu_list=$(func_parser_value "${lines[3]}")
train_use_gpu_key=$(func_parser_key "${lines[4]}")
train_use_gpu_value=$(func_parser_value "${lines[4]}")
autocast_list=$(func_parser_value "${lines[5]}")
autocast_key=$(func_parser_key "${lines[5]}")
epoch_key=$(func_parser_key "${lines[6]}")
epoch_num=$(func_parser_params "${lines[6]}")
save_model_key=$(func_parser_key "${lines[7]}")
train_batch_key=$(func_parser_key "${lines[8]}")
train_batch_value=$(func_parser_params "${lines[8]}")
pretrain_model_key=$(func_parser_key "${lines[9]}")
pretrain_model_value=$(func_parser_value "${lines[9]}")
train_model_name=$(func_parser_value "${lines[10]}")
train_infer_img_dir=$(func_parser_value "${lines[11]}")
train_param_key1=$(func_parser_key "${lines[12]}")
train_param_value1=$(func_parser_value "${lines[12]}")

trainer_list=$(func_parser_value "${lines[14]}")
trainer_norm=$(func_parser_key "${lines[15]}")
norm_trainer=$(func_parser_value "${lines[15]}")
pact_key=$(func_parser_key "${lines[16]}")
pact_trainer=$(func_parser_value "${lines[16]}")
fpgm_key=$(func_parser_key "${lines[17]}")
fpgm_trainer=$(func_parser_value "${lines[17]}")
distill_key=$(func_parser_key "${lines[18]}")
distill_trainer=$(func_parser_value "${lines[18]}")
trainer_key1=$(func_parser_key "${lines[19]}")
trainer_value1=$(func_parser_value "${lines[19]}")
trainer_key2=$(func_parser_key "${lines[20]}")
trainer_value2=$(func_parser_value "${lines[20]}")

eval_py=$(func_parser_value "${lines[23]}")
eval_key1=$(func_parser_key "${lines[24]}")
eval_value1=$(func_parser_value "${lines[24]}")

save_infer_key=$(func_parser_key "${lines[27]}")
export_weight=$(func_parser_key "${lines[28]}")
norm_export=$(func_parser_value "${lines[29]}")
pact_export=$(func_parser_value "${lines[30]}")
fpgm_export=$(func_parser_value "${lines[31]}")
distill_export=$(func_parser_value "${lines[32]}")
export_key1=$(func_parser_key "${lines[33]}")
export_value1=$(func_parser_value "${lines[33]}")
export_key2=$(func_parser_key "${lines[34]}")
export_value2=$(func_parser_value "${lines[34]}")

S
shangliang Xu 已提交
121
# parser inference model
S
shangliang Xu 已提交
122 123
infer_model_name_list=$(func_parser_value "${lines[36]}")
infer_model_dir=$(func_parser_value "${lines[37]}")
S
shangliang Xu 已提交
124 125 126
infer_is_quant=$(func_parser_value "${lines[38]}")
# parser inference
inference_py=$(func_parser_value "${lines[39]}")
S
shangliang Xu 已提交
127 128
device_key=$(func_parser_key "${lines[40]}")
device_list=$(func_parser_value "${lines[40]}")
S
shangliang Xu 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
use_mkldnn_key=$(func_parser_key "${lines[41]}")
use_mkldnn_list=$(func_parser_value "${lines[41]}")
cpu_threads_key=$(func_parser_key "${lines[42]}")
cpu_threads_list=$(func_parser_value "${lines[42]}")
batch_size_key=$(func_parser_key "${lines[43]}")
batch_size_list=$(func_parser_value "${lines[43]}")
use_trt_key=$(func_parser_key "${lines[44]}")
use_trt_list=$(func_parser_value "${lines[44]}")
precision_key=$(func_parser_key "${lines[45]}")
precision_list=$(func_parser_value "${lines[45]}")
infer_model_key=$(func_parser_key "${lines[46]}")
image_dir_key=$(func_parser_key "${lines[47]}")
infer_img_dir=$(func_parser_value "${lines[47]}")
save_log_key=$(func_parser_key "${lines[48]}")
benchmark_key=$(func_parser_key "${lines[49]}")
benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161

LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"


function func_inference(){
    IFS='|'
    _python=$1
    _script=$2
    _model_dir=$3
    _log_path=$4
    _img_dir=$5
    _flag_quant=$6
    # inference
S
shangliang Xu 已提交
162 163
    for device in ${device_list[*]}; do
        if [ ${device} = "False" ] || [ ${device} = "cpu" ]; then
164 165 166 167 168 169 170 171 172 173 174 175 176
            for use_mkldnn in ${use_mkldnn_list[*]}; do
                if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
                    continue
                fi
                for threads in ${cpu_threads_list[*]}; do
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_cpu_threads=$(func_set_params "${cpu_threads_key}" "${threads}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
S
shangliang Xu 已提交
177
                        command="${_python} ${_script} ${device_key}=${device} ${use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
C
cnn 已提交
178
                        eval $command
S
shangliang Xu 已提交
179 180 181
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"
182 183 184
                    done
                done
            done
S
shangliang Xu 已提交
185
        elif [ ${device} = "True" ] || [ ${device} = "gpu" ]; then
186 187
            for use_trt in ${use_trt_list[*]}; do
                for precision in ${precision_list[*]}; do
S
shangliang Xu 已提交
188 189 190 191 192 193 194
                    if [[ ${precision} != "fluid" ]]; then
                        if [[ ${_flag_quant} = "False" ]] && [[ ${precision} = "trt_int8" ]]; then
                            continue
                        fi
                        if [[ ${_flag_quant} = "True" ]] && [[ ${precision} != "trt_int8" ]]; then
                            continue
                        fi
195 196 197 198 199 200 201 202 203
                    fi
                    for batch_size in ${batch_size_list[*]}; do
                        _save_log_path="${_log_path}/infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
                        set_infer_data=$(func_set_params "${image_dir_key}" "${_img_dir}")
                        set_benchmark=$(func_set_params "${benchmark_key}" "${benchmark_value}")
                        set_batchsize=$(func_set_params "${batch_size_key}" "${batch_size}")
                        set_tensorrt=$(func_set_params "${use_trt_key}" "${use_trt}")
                        set_precision=$(func_set_params "${precision_key}" "${precision}")
                        set_model_dir=$(func_set_params "${infer_model_key}" "${_model_dir}")
S
shangliang Xu 已提交
204
                        set_infer_params1=$(func_set_params "${infer_key1}" "${infer_value1}")
S
shangliang Xu 已提交
205
                        command="${_python} ${_script} ${device_key}=${device} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} ${set_infer_params1} > ${_save_log_path} 2>&1 "
206
                        eval $command
S
shangliang Xu 已提交
207 208 209 210
                        last_status=${PIPESTATUS[0]}
                        eval "cat ${_save_log_path}"
                        status_check $last_status "${command}" "${status_log}"

211 212 213 214
                    done
                done
            done
        else
S
shangliang Xu 已提交
215
            echo "Does not support hardware other than CPU and GPU Currently!"
216 217 218 219 220 221 222 223 224 225 226
        fi
    done
}

if [ ${MODE} = "infer" ]; then
    GPUID=$3
    if [ ${#GPUID} -le 0 ];then
        env=" "
    else
        env="export CUDA_VISIBLE_DEVICES=${GPUID}"
    fi
S
shangliang Xu 已提交
227 228 229 230 231 232
    # set CUDA_VISIBLE_DEVICES
    eval $env
    export Count=0
    IFS="|"
    infer_quant_flag=(${infer_is_quant})
    set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
S
shangliang Xu 已提交
233 234 235
    set_save_infer_key=$(func_set_params "${save_infer_key}" "${infer_model_dir}")
    infer_model="${infer_model_dir}/${train_param_value1}"
    for infer_model_name in ${infer_model_name_list[*]}; do
S
shangliang Xu 已提交
236
        # run export
S
shangliang Xu 已提交
237 238 239 240 241 242 243 244 245 246 247 248
        case ${Count} in
            0) run_export=${norm_export} ;;
            1) run_export=${pact_export} ;;
            2) run_export=${fpgm_export} ;;
            *) echo "Undefined run_export"; exit 1;
        esac
        set_export_weight=$(func_set_params "${export_weight}" "${infer_model_dir}/${infer_model_name}")
        export_cmd="${python} ${run_export} ${set_export_weight} ${set_train_params1} ${set_save_infer_key}"
        eval $export_cmd
        status_export=$?
        if [ ${status_export} = 0 ];then
            status_check $status_export "${export_cmd}" "${status_log}"
S
shangliang Xu 已提交
249 250 251 252 253 254
        fi
        #run inference
        is_quant=${infer_quant_flag[Count]}
        func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
        Count=$(($Count + 1))
    done
255

S
shangliang Xu 已提交
256 257 258 259 260 261 262 263 264 265 266 267 268 269
    # kl quant
    if [ ${export_key1} = "kl_quant" ]; then
        # run kl quant
        kl_cmd="${python} ${export_value1} ${set_train_params1} ${set_save_infer_key}"
        eval $kl_cmd
        status_export=$?
        if [ ${status_export} = 0 ];then
            status_check $status_export "${kl_cmd}" "${status_log}"
        fi
        # run inference
        is_quant=True
        func_inference "${python}" "${inference_py}" "${infer_model}" "${LOG_PATH}" "${infer_img_dir}" ${is_quant}
    fi

270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
else
    IFS="|"
    export Count=0
    USE_GPU_KEY=(${train_use_gpu_value})
    for gpu in ${gpu_list[*]}; do
        use_gpu=${USE_GPU_KEY[Count]}
        Count=$(($Count + 1))
        if [ ${gpu} = "-1" ];then
            env=""
        elif [ ${#gpu} -le 1 ];then
            env="export CUDA_VISIBLE_DEVICES=${gpu}"
            eval ${env}
        elif [ ${#gpu} -le 15 ];then
            IFS=","
            array=(${gpu})
            env="export CUDA_VISIBLE_DEVICES=${array[0]}"
            IFS="|"
        else
            IFS=";"
            array=(${gpu})
            ips=${array[0]}
            gpu=${array[1]}
            IFS="|"
            env=" "
        fi
        for autocast in ${autocast_list[*]}; do
            for trainer in ${trainer_list[*]}; do
                flag_quant=False
                if [ ${trainer} = ${pact_key} ]; then
                    run_train=${pact_trainer}
                    run_export=${pact_export}
                    flag_quant=True
302 303 304
                    if [ ${autocast} = "amp" ]; then
                        continue
                    fi
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
                elif [ ${trainer} = "${fpgm_key}" ]; then
                    run_train=${fpgm_trainer}
                    run_export=${fpgm_export}
                elif [ ${trainer} = "${distill_key}" ]; then
                    run_train=${distill_trainer}
                    run_export=${distill_export}
                elif [ ${trainer} = ${trainer_key1} ]; then
                    run_train=${trainer_value1}
                    run_export=${export_value1}
                elif [[ ${trainer} = ${trainer_key2} ]]; then
                    run_train=${trainer_value2}
                    run_export=${export_value2}
                else
                    run_train=${norm_trainer}
                    run_export=${norm_export}
                fi

                if [ ${run_train} = "null" ]; then
                    continue
                fi

326 327 328 329 330
                if [ ${autocast} = "amp" ]; then
                    set_autocast="--fp16"
                else
                    set_autocast=$(func_set_params "${autocast_key}" "${autocast}")
                fi
331 332 333 334 335 336 337 338 339
                set_epoch=$(func_set_params "${epoch_key}" "${epoch_num}")
                set_pretrain=$(func_set_params "${pretrain_model_key}" "${pretrain_model_value}")
                set_batchsize=$(func_set_params "${train_batch_key}" "${train_batch_value}")
                set_train_params1=$(func_set_params "${train_param_key1}" "${train_param_value1}")
                set_use_gpu=$(func_set_params "${train_use_gpu_key}" "${use_gpu}")
                save_log="${LOG_PATH}/${trainer}_gpus_${gpu}_autocast_${autocast}"

                # load pretrain from norm training if current trainer is pact or fpgm trainer
                if [ ${trainer} = ${pact_key} ] || [ ${trainer} = ${fpgm_key} ]; then
S
shangliang Xu 已提交
340
                    set_pretrain=$(func_set_params "${pretrain_model_key}" "${save_log}/${train_model_name}")
341 342 343 344
                fi

                set_save_model=$(func_set_params "${save_model_key}" "${save_log}")
                if [ ${#gpu} -le 2 ];then  # train with cpu or single gpu
345
                    cmd="${python} ${run_train} ${set_use_gpu}  ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_train_params1} ${set_autocast} "
346
                elif [ ${#gpu} -le 15 ];then  # train with multi-gpu
347
                    cmd="${python} -m paddle.distributed.launch --gpus=${gpu} ${run_train} ${set_save_model} ${set_epoch} ${set_pretrain} ${set_batchsize} ${set_train_params1} ${set_autocast}"
348
                else     # train with multi-machine
349
                    cmd="${python} -m paddle.distributed.launch --ips=${ips} --gpus=${gpu} ${run_train} ${set_save_model} ${set_pretrain} ${set_epoch} ${set_batchsize} ${set_train_params1} ${set_autocast}"
350 351
                fi
                # run train
S
shangliang Xu 已提交
352
                # eval "unset CUDA_VISIBLE_DEVICES"
353 354 355
                eval $cmd
                status_check $? "${cmd}" "${status_log}"

S
shangliang Xu 已提交
356
                set_eval_trained_weight=$(func_set_params "weights" "${save_log}/${train_model_name}")
357 358 359
                # run eval
                if [ ${eval_py} != "null" ]; then
                    set_eval_params1=$(func_set_params "${eval_key1}" "${eval_value1}")
S
shangliang Xu 已提交
360
                    eval_cmd="${python} ${eval_py} ${set_eval_trained_weight} ${set_use_gpu} ${set_eval_params1}"
361 362 363 364 365 366 367
                    eval $eval_cmd
                    status_check $? "${eval_cmd}" "${status_log}"
                fi
                # run export model
                if [ ${run_export} != "null" ]; then
                    # run export model
                    save_infer_path="${save_log}"
S
shangliang Xu 已提交
368 369 370
                    set_export_weight=$(func_set_params "${export_weight}" "${save_log}/${train_model_name}")
                    set_save_infer_key=$(func_set_params "${save_infer_key}" "${save_infer_path}")
                    export_cmd="${python} ${run_export} ${set_export_weight} ${set_train_params1} ${set_save_infer_key}"
371 372 373 374 375
                    eval $export_cmd
                    status_check $? "${export_cmd}" "${status_log}"

                    #run inference
                    eval $env
S
shangliang Xu 已提交
376 377
                    save_infer_path="${save_log}/${train_param_value1}"
                    func_inference "${python}" "${inference_py}" "${save_infer_path}" "${LOG_PATH}" "${train_infer_img_dir}" "${flag_quant}"
S
shangliang Xu 已提交
378
                    # eval "unset CUDA_VISIBLE_DEVICES"
379 380 381 382 383
                fi
            done  # done with:    for trainer in ${trainer_list[*]}; do
        done      # done with:    for autocast in ${autocast_list[*]}; do
    done          # done with:    for gpu in ${gpu_list[*]}; do
fi  # end if [ ${MODE} = "infer" ]; then