s2anet_head.py 31.9 KB
Newer Older
C
cnn 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn.initializer import Normal, Constant
from ppdet.core.workspace import register
from ppdet.modeling import bbox_utils
from ppdet.modeling.proposal_generator.target_layer import RBoxAssigner
import numpy as np


C
cnn 已提交
25
class S2ANetAnchorGenerator(nn.Layer):
C
cnn 已提交
26
    """
C
cnn 已提交
27
    AnchorGenerator by paddle
C
cnn 已提交
28 29
    """

C
cnn 已提交
30 31
    def __init__(self, base_size, scales, ratios, scale_major=True, ctr=None):
        super(S2ANetAnchorGenerator, self).__init__()
C
cnn 已提交
32
        self.base_size = base_size
C
cnn 已提交
33 34
        self.scales = paddle.to_tensor(scales)
        self.ratios = paddle.to_tensor(ratios)
C
cnn 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
        self.scale_major = scale_major
        self.ctr = ctr
        self.base_anchors = self.gen_base_anchors()

    @property
    def num_base_anchors(self):
        return self.base_anchors.shape[0]

    def gen_base_anchors(self):
        w = self.base_size
        h = self.base_size
        if self.ctr is None:
            x_ctr = 0.5 * (w - 1)
            y_ctr = 0.5 * (h - 1)
        else:
            x_ctr, y_ctr = self.ctr

C
cnn 已提交
52
        h_ratios = paddle.sqrt(self.ratios)
C
cnn 已提交
53 54 55 56 57 58 59 60
        w_ratios = 1 / h_ratios
        if self.scale_major:
            ws = (w * w_ratios[:] * self.scales[:]).reshape([-1])
            hs = (h * h_ratios[:] * self.scales[:]).reshape([-1])
        else:
            ws = (w * self.scales[:] * w_ratios[:]).reshape([-1])
            hs = (h * self.scales[:] * h_ratios[:]).reshape([-1])

C
cnn 已提交
61
        base_anchors = paddle.stack(
C
cnn 已提交
62 63 64 65 66
            [
                x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1),
                x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1)
            ],
            axis=-1)
C
cnn 已提交
67
        base_anchors = paddle.round(base_anchors)
C
cnn 已提交
68 69 70
        return base_anchors

    def _meshgrid(self, x, y, row_major=True):
C
cnn 已提交
71 72 73
        yy, xx = paddle.meshgrid(x, y)
        yy = yy.reshape([-1])
        xx = xx.reshape([-1])
C
cnn 已提交
74 75 76 77 78
        if row_major:
            return xx, yy
        else:
            return yy, xx

C
cnn 已提交
79
    def forward(self, featmap_size, stride=16):
C
cnn 已提交
80 81
        # featmap_size*stride project it to original area
        base_anchors = self.base_anchors
C
cnn 已提交
82 83 84 85 86

        feat_h = featmap_size[0]
        feat_w = featmap_size[1]
        shift_x = paddle.arange(0, feat_w, 1, 'int32') * stride
        shift_y = paddle.arange(0, feat_h, 1, 'int32') * stride
C
cnn 已提交
87
        shift_xx, shift_yy = self._meshgrid(shift_x, shift_y)
C
cnn 已提交
88 89 90 91
        shifts = paddle.stack([shift_xx, shift_yy, shift_xx, shift_yy], axis=-1)

        all_anchors = base_anchors[:, :] + shifts[:, :]
        all_anchors = all_anchors.reshape([feat_h * feat_w, 4])
C
cnn 已提交
92 93 94 95 96 97
        return all_anchors

    def valid_flags(self, featmap_size, valid_size):
        feat_h, feat_w = featmap_size
        valid_h, valid_w = valid_size
        assert valid_h <= feat_h and valid_w <= feat_w
C
cnn 已提交
98 99
        valid_x = paddle.zeros([feat_w], dtype='uint8')
        valid_y = paddle.zeros([feat_h], dtype='uint8')
C
cnn 已提交
100 101 102 103
        valid_x[:valid_w] = 1
        valid_y[:valid_h] = 1
        valid_xx, valid_yy = self._meshgrid(valid_x, valid_y)
        valid = valid_xx & valid_yy
C
cnn 已提交
104 105
        valid = valid[:, None].expand(
            [valid.size(0), self.num_base_anchors]).reshape([-1])
C
cnn 已提交
106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
        return valid


class AlignConv(nn.Layer):
    def __init__(self, in_channels, out_channels, kernel_size=3, groups=1):
        super(AlignConv, self).__init__()
        self.kernel_size = kernel_size
        self.align_conv = paddle.vision.ops.DeformConv2D(
            in_channels,
            out_channels,
            kernel_size=self.kernel_size,
            padding=(self.kernel_size - 1) // 2,
            groups=groups,
            weight_attr=ParamAttr(initializer=Normal(0, 0.01)),
            bias_attr=None)

    @paddle.no_grad()
    def get_offset(self, anchors, featmap_size, stride):
        """
        Args:
            anchors: [M,5] xc,yc,w,h,angle
            featmap_size: (feat_h, feat_w)
            stride: 8
        Returns:

        """
        anchors = paddle.reshape(anchors, [-1, 5])  # (NA,5)
        dtype = anchors.dtype
        feat_h, feat_w = featmap_size
        pad = (self.kernel_size - 1) // 2
        idx = paddle.arange(-pad, pad + 1, dtype=dtype)

        yy, xx = paddle.meshgrid(idx, idx)
        xx = paddle.reshape(xx, [-1])
        yy = paddle.reshape(yy, [-1])

        # get sampling locations of default conv
        xc = paddle.arange(0, feat_w, dtype=dtype)
        yc = paddle.arange(0, feat_h, dtype=dtype)
        yc, xc = paddle.meshgrid(yc, xc)

        xc = paddle.reshape(xc, [-1, 1])
        yc = paddle.reshape(yc, [-1, 1])
        x_conv = xc + xx
        y_conv = yc + yy

        # get sampling locations of anchors
        # x_ctr, y_ctr, w, h, a = np.unbind(anchors, dim=1)
        x_ctr = anchors[:, 0]
        y_ctr = anchors[:, 1]
        w = anchors[:, 2]
        h = anchors[:, 3]
        a = anchors[:, 4]

        x_ctr = paddle.reshape(x_ctr, [x_ctr.shape[0], 1])
        y_ctr = paddle.reshape(y_ctr, [y_ctr.shape[0], 1])
        w = paddle.reshape(w, [w.shape[0], 1])
        h = paddle.reshape(h, [h.shape[0], 1])
        a = paddle.reshape(a, [a.shape[0], 1])

        x_ctr = x_ctr / stride
        y_ctr = y_ctr / stride
        w_s = w / stride
        h_s = h / stride
        cos, sin = paddle.cos(a), paddle.sin(a)
        dw, dh = w_s / self.kernel_size, h_s / self.kernel_size
        x, y = dw * xx, dh * yy
        xr = cos * x - sin * y
        yr = sin * x + cos * y
        x_anchor, y_anchor = xr + x_ctr, yr + y_ctr
        # get offset filed
        offset_x = x_anchor - x_conv
        offset_y = y_anchor - y_conv
        # x, y in anchors is opposite in image coordinates,
        # so we stack them with y, x other than x, y
        offset = paddle.stack([offset_y, offset_x], axis=-1)
        # NA,ks*ks*2
        # [NA, ks, ks, 2] --> [NA, ks*ks*2]
        offset = paddle.reshape(offset, [offset.shape[0], -1])
        # [NA, ks*ks*2] --> [ks*ks*2, NA]
        offset = paddle.transpose(offset, [1, 0])
        # [NA, ks*ks*2] --> [1, ks*ks*2, H, W]
        offset = paddle.reshape(offset, [1, -1, feat_h, feat_w])
        return offset

    def forward(self, x, refine_anchors, stride):
        featmap_size = (x.shape[2], x.shape[3])
        offset = self.get_offset(refine_anchors, featmap_size, stride)
        x = F.relu(self.align_conv(x, offset))
        return x


@register
class S2ANetHead(nn.Layer):
    """
    S2Anet head
    Args:
        stacked_convs (int): number of stacked_convs
        feat_in (int): input channels of feat
        feat_out (int): output channels of feat
        num_classes (int): num_classes
        anchor_strides (list): stride of anchors
        anchor_scales (list): scale of anchors
        anchor_ratios (list): ratios of anchors
        target_means (list): target_means
        target_stds (list): target_stds
        align_conv_type (str): align_conv_type ['Conv', 'AlignConv']
        align_conv_size (int): kernel size of align_conv
        use_sigmoid_cls (bool): use sigmoid_cls or not
C
cnn 已提交
215
        reg_loss_weight (list): loss weight for regression
C
cnn 已提交
216 217 218 219 220 221 222 223 224 225 226 227
    """
    __shared__ = ['num_classes']
    __inject__ = ['anchor_assign']

    def __init__(self,
                 stacked_convs=2,
                 feat_in=256,
                 feat_out=256,
                 num_classes=15,
                 anchor_strides=[8, 16, 32, 64, 128],
                 anchor_scales=[4],
                 anchor_ratios=[1.0],
C
cnn 已提交
228 229
                 target_means=0.0,
                 target_stds=1.0,
C
cnn 已提交
230 231 232 233
                 align_conv_type='AlignConv',
                 align_conv_size=3,
                 use_sigmoid_cls=True,
                 anchor_assign=RBoxAssigner().__dict__,
234 235
                 reg_loss_weight=[1.0, 1.0, 1.0, 1.0, 1.0],
                 cls_loss_weight=[1.0, 1.0]):
C
cnn 已提交
236 237 238 239 240 241 242 243 244 245 246
        super(S2ANetHead, self).__init__()
        self.stacked_convs = stacked_convs
        self.feat_in = feat_in
        self.feat_out = feat_out
        self.anchor_list = None
        self.anchor_scales = anchor_scales
        self.anchor_ratios = anchor_ratios
        self.anchor_strides = anchor_strides
        self.anchor_base_sizes = list(anchor_strides)
        self.target_means = target_means
        self.target_stds = target_stds
C
cnn 已提交
247
        assert align_conv_type in ['AlignConv', 'Conv', 'DCN']
C
cnn 已提交
248 249 250 251 252 253 254 255
        self.align_conv_type = align_conv_type
        self.align_conv_size = align_conv_size

        self.use_sigmoid_cls = use_sigmoid_cls
        self.cls_out_channels = num_classes if self.use_sigmoid_cls else 1
        self.sampling = False
        self.anchor_assign = anchor_assign
        self.reg_loss_weight = reg_loss_weight
256
        self.cls_loss_weight = cls_loss_weight
C
cnn 已提交
257 258 259 260 261 262 263 264 265

        self.s2anet_head_out = None

        # anchor
        self.anchor_generators = []
        for anchor_base in self.anchor_base_sizes:
            self.anchor_generators.append(
                S2ANetAnchorGenerator(anchor_base, anchor_scales,
                                      anchor_ratios))
C
cnn 已提交
266 267
        self.anchor_generators = paddle.nn.LayerList(self.anchor_generators)
        self.add_sublayer('s2anet_anchor_gen', self.anchor_generators)
C
cnn 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326

        self.fam_cls_convs = nn.Sequential()
        self.fam_reg_convs = nn.Sequential()

        for i in range(self.stacked_convs):
            chan_in = self.feat_in if i == 0 else self.feat_out

            self.fam_cls_convs.add_sublayer(
                'fam_cls_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=chan_in,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.fam_cls_convs.add_sublayer('fam_cls_conv_{}_act'.format(i),
                                            nn.ReLU())

            self.fam_reg_convs.add_sublayer(
                'fam_reg_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=chan_in,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.fam_reg_convs.add_sublayer('fam_reg_conv_{}_act'.format(i),
                                            nn.ReLU())

        self.fam_reg = nn.Conv2D(
            self.feat_out,
            5,
            1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(0)))
        prior_prob = 0.01
        bias_init = float(-np.log((1 - prior_prob) / prior_prob))
        self.fam_cls = nn.Conv2D(
            self.feat_out,
            self.cls_out_channels,
            1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(bias_init)))

        if self.align_conv_type == "AlignConv":
            self.align_conv = AlignConv(self.feat_out, self.feat_out,
                                        self.align_conv_size)
        elif self.align_conv_type == "Conv":
            self.align_conv = nn.Conv2D(
                self.feat_out,
                self.feat_out,
                self.align_conv_size,
                padding=(self.align_conv_size - 1) // 2,
                bias_attr=ParamAttr(initializer=Constant(0)))

C
cnn 已提交
327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
        elif self.align_conv_type == "DCN":
            self.align_conv_offset = nn.Conv2D(
                self.feat_out,
                2 * self.align_conv_size**2,
                1,
                weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                bias_attr=ParamAttr(initializer=Constant(0)))

            self.align_conv = paddle.vision.ops.DeformConv2D(
                self.feat_out,
                self.feat_out,
                self.align_conv_size,
                padding=(self.align_conv_size - 1) // 2,
                weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                bias_attr=False)

C
cnn 已提交
343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401
        self.or_conv = nn.Conv2D(
            self.feat_out,
            self.feat_out,
            kernel_size=3,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(0)))

        # ODM
        self.odm_cls_convs = nn.Sequential()
        self.odm_reg_convs = nn.Sequential()

        for i in range(self.stacked_convs):
            ch_in = self.feat_out
            # ch_in = int(self.feat_out / 8) if i == 0 else self.feat_out

            self.odm_cls_convs.add_sublayer(
                'odm_cls_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=ch_in,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.odm_cls_convs.add_sublayer('odm_cls_conv_{}_act'.format(i),
                                            nn.ReLU())

            self.odm_reg_convs.add_sublayer(
                'odm_reg_conv_{}'.format(i),
                nn.Conv2D(
                    in_channels=self.feat_out,
                    out_channels=self.feat_out,
                    kernel_size=3,
                    stride=1,
                    padding=1,
                    weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
                    bias_attr=ParamAttr(initializer=Constant(0))))

            self.odm_reg_convs.add_sublayer('odm_reg_conv_{}_act'.format(i),
                                            nn.ReLU())

        self.odm_cls = nn.Conv2D(
            self.feat_out,
            self.cls_out_channels,
            3,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(bias_init)))
        self.odm_reg = nn.Conv2D(
            self.feat_out,
            5,
            3,
            padding=1,
            weight_attr=ParamAttr(initializer=Normal(0.0, 0.01)),
            bias_attr=ParamAttr(initializer=Constant(0)))

C
cnn 已提交
402 403 404
        self.featmap_size_list = []
        self.init_anchors_list = []
        self.rbox_anchors_list = []
C
cnn 已提交
405 406
        self.refine_anchor_list = []

C
cnn 已提交
407 408 409 410 411 412 413
    def forward(self, feats):
        fam_reg_branch_list = []
        fam_cls_branch_list = []

        odm_reg_branch_list = []
        odm_cls_branch_list = []

C
cnn 已提交
414 415 416 417 418
        fam_reg1_branch_list = []

        self.featmap_size_list = []
        self.init_anchors_list = []
        self.rbox_anchors_list = []
C
cnn 已提交
419 420 421
        self.refine_anchor_list = []

        for i, feat in enumerate(feats):
C
cnn 已提交
422 423 424 425 426 427 428 429 430 431 432
            # prepare anchor
            featmap_size = paddle.shape(feat)[-2:]
            self.featmap_size_list.append(featmap_size)
            init_anchors = self.anchor_generators[i](featmap_size,
                                                     self.anchor_strides[i])
            init_anchors = paddle.reshape(
                init_anchors, [featmap_size[0] * featmap_size[1], 4])
            self.init_anchors_list.append(init_anchors)

            rbox_anchors = self.rect2rbox(init_anchors)
            self.rbox_anchors_list.append(rbox_anchors)
C
cnn 已提交
433

C
cnn 已提交
434
            fam_cls_feat = self.fam_cls_convs(feat)
C
cnn 已提交
435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
            fam_cls = self.fam_cls(fam_cls_feat)
            # [N, CLS, H, W] --> [N, H, W, CLS]
            fam_cls = fam_cls.transpose([0, 2, 3, 1])
            fam_cls_reshape = paddle.reshape(
                fam_cls, [fam_cls.shape[0], -1, self.cls_out_channels])
            fam_cls_branch_list.append(fam_cls_reshape)

            fam_reg_feat = self.fam_reg_convs(feat)

            fam_reg = self.fam_reg(fam_reg_feat)
            # [N, 5, H, W] --> [N, H, W, 5]
            fam_reg = fam_reg.transpose([0, 2, 3, 1])
            fam_reg_reshape = paddle.reshape(fam_reg, [fam_reg.shape[0], -1, 5])
            fam_reg_branch_list.append(fam_reg_reshape)

C
cnn 已提交
450
            # refine anchors
451 452
            fam_reg1 = fam_reg.clone()
            fam_reg1.stop_gradient = True
C
cnn 已提交
453 454 455 456
            rbox_anchors.stop_gradient = True
            fam_reg1_branch_list.append(fam_reg1)
            refine_anchor = self.bbox_decode(
                fam_reg1, rbox_anchors, self.target_stds, self.target_means)
C
cnn 已提交
457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
            self.refine_anchor_list.append(refine_anchor)

            if self.align_conv_type == 'AlignConv':
                align_feat = self.align_conv(feat,
                                             refine_anchor.clone(),
                                             self.anchor_strides[i])
            elif self.align_conv_type == 'DCN':
                align_offset = self.align_conv_offset(feat)
                align_feat = self.align_conv(feat, align_offset)
            elif self.align_conv_type == 'Conv':
                align_feat = self.align_conv(feat)

            or_feat = self.or_conv(align_feat)
            odm_reg_feat = or_feat
            odm_cls_feat = or_feat

            odm_reg_feat = self.odm_reg_convs(odm_reg_feat)
            odm_cls_feat = self.odm_cls_convs(odm_cls_feat)

            odm_cls_score = self.odm_cls(odm_cls_feat)
            # [N, CLS, H, W] --> [N, H, W, CLS]
            odm_cls_score = odm_cls_score.transpose([0, 2, 3, 1])
            odm_cls_score_reshape = paddle.reshape(
                odm_cls_score,
                [odm_cls_score.shape[0], -1, self.cls_out_channels])

            odm_cls_branch_list.append(odm_cls_score_reshape)

            odm_bbox_pred = self.odm_reg(odm_reg_feat)
            # [N, 5, H, W] --> [N, H, W, 5]
            odm_bbox_pred = odm_bbox_pred.transpose([0, 2, 3, 1])
            odm_bbox_pred_reshape = paddle.reshape(
                odm_bbox_pred, [odm_bbox_pred.shape[0], -1, 5])
            odm_reg_branch_list.append(odm_bbox_pred_reshape)

        self.s2anet_head_out = (fam_cls_branch_list, fam_reg_branch_list,
                                odm_cls_branch_list, odm_reg_branch_list)
        return self.s2anet_head_out

C
cnn 已提交
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576
    def rect2rbox(self, bboxes):
        """
        :param bboxes: shape (n, 4) (xmin, ymin, xmax, ymax)
        :return: dbboxes: shape (n, 5) (x_ctr, y_ctr, w, h, angle)
        """
        num_boxes = paddle.shape(bboxes)[0]
        x_ctr = (bboxes[:, 2] + bboxes[:, 0]) / 2.0
        y_ctr = (bboxes[:, 3] + bboxes[:, 1]) / 2.0
        edges1 = paddle.abs(bboxes[:, 2] - bboxes[:, 0])
        edges2 = paddle.abs(bboxes[:, 3] - bboxes[:, 1])

        rbox_w = paddle.maximum(edges1, edges2)
        rbox_h = paddle.minimum(edges1, edges2)

        # set angle
        inds = edges1 < edges2
        inds = paddle.cast(inds, 'int32')
        inds1 = inds * paddle.arange(0, num_boxes)
        rboxes_angle = inds1 * np.pi / 2.0

        rboxes = paddle.stack(
            (x_ctr, y_ctr, rbox_w, rbox_h, rboxes_angle), axis=1)
        return rboxes

    # deltas to rbox
    def delta2rbox(self, rrois, deltas, means, stds, wh_ratio_clip=1e-6):
        """
        :param rrois: (cx, cy, w, h, theta)
        :param deltas: (dx, dy, dw, dh, dtheta)
        :param means: means of anchor
        :param stds: stds of anchor
        :param wh_ratio_clip: clip threshold of wh_ratio
        :return:
        """
        deltas = paddle.reshape(deltas, [-1, 5])
        rrois = paddle.reshape(rrois, [-1, 5])
        pd_means = paddle.ones(shape=[5]) * means
        pd_stds = paddle.ones(shape=[5]) * stds
        denorm_deltas = deltas * pd_stds + pd_means

        dx = denorm_deltas[:, 0]
        dy = denorm_deltas[:, 1]
        dw = denorm_deltas[:, 2]
        dh = denorm_deltas[:, 3]
        dangle = denorm_deltas[:, 4]
        max_ratio = np.abs(np.log(wh_ratio_clip))
        dw = paddle.clip(dw, min=-max_ratio, max=max_ratio)
        dh = paddle.clip(dh, min=-max_ratio, max=max_ratio)

        rroi_x = rrois[:, 0]
        rroi_y = rrois[:, 1]
        rroi_w = rrois[:, 2]
        rroi_h = rrois[:, 3]
        rroi_angle = rrois[:, 4]

        gx = dx * rroi_w * paddle.cos(rroi_angle) - dy * rroi_h * paddle.sin(
            rroi_angle) + rroi_x
        gy = dx * rroi_w * paddle.sin(rroi_angle) + dy * rroi_h * paddle.cos(
            rroi_angle) + rroi_y
        gw = rroi_w * dw.exp()
        gh = rroi_h * dh.exp()
        ga = np.pi * dangle + rroi_angle
        ga = (ga + np.pi / 4) % np.pi - np.pi / 4
        bboxes = paddle.stack([gx, gy, gw, gh, ga], axis=-1)
        return bboxes

    def bbox_decode(self, bbox_preds, anchors, stds, means, wh_ratio_clip=1e-6):
        """decode bbox from deltas
        Args:
            bbox_preds: bbox_preds, shape=[N,H,W,5]
            anchors: anchors, shape=[H,W,5]
        return:
            bboxes: return decoded bboxes, shape=[N*H*W,5]
        """

        num_imgs, H, W, _ = bbox_preds.shape
        bbox_delta = paddle.reshape(bbox_preds, [-1, 5])
        bboxes = self.delta2rbox(anchors, bbox_delta, means, stds,
                                 wh_ratio_clip)
        return bboxes

C
cnn 已提交
577 578 579 580 581 582 583 584 585 586
    def get_prediction(self, nms_pre):
        refine_anchors = self.refine_anchor_list
        fam_cls_branch_list, fam_reg_branch_list, odm_cls_branch_list, odm_reg_branch_list = self.s2anet_head_out
        pred_scores, pred_bboxes = self.get_bboxes(
            odm_cls_branch_list,
            odm_reg_branch_list,
            refine_anchors,
            nms_pre,
            cls_out_channels=self.cls_out_channels,
            use_sigmoid_cls=self.use_sigmoid_cls)
C
cnn 已提交
587

C
cnn 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
        return pred_scores, pred_bboxes

    def smooth_l1_loss(self, pred, label, delta=1.0 / 9.0):
        """
        Args:
            pred: pred score
            label: label
            delta: delta
        Returns: loss
        """
        assert pred.shape == label.shape and label.numel() > 0
        assert delta > 0
        diff = paddle.abs(pred - label)
        loss = paddle.where(diff < delta, 0.5 * diff * diff / delta,
                            diff - 0.5 * delta)
        return loss

    def get_fam_loss(self, fam_target, s2anet_head_out):
C
cnn 已提交
606 607 608 609 610
        (feat_labels, feat_label_weights, feat_bbox_targets, feat_bbox_weights,
         pos_inds, neg_inds) = fam_target
        fam_cls_score, fam_bbox_pred = s2anet_head_out

        # step1:  sample count
C
cnn 已提交
611 612 613 614
        num_total_samples = len(pos_inds) + len(
            neg_inds) if self.sampling else len(pos_inds)
        num_total_samples = max(1, num_total_samples)

C
cnn 已提交
615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659
        # step2: calc cls loss
        feat_labels = feat_labels.reshape(-1)
        feat_label_weights = feat_label_weights.reshape(-1)
        fam_cls_score = paddle.squeeze(fam_cls_score, axis=0)
        fam_cls_score1 = fam_cls_score

        feat_labels = paddle.to_tensor(feat_labels)
        feat_labels_one_hot = F.one_hot(feat_labels, self.cls_out_channels + 1)
        feat_labels_one_hot = feat_labels_one_hot[:, 1:]
        feat_labels_one_hot.stop_gradient = True

        num_total_samples = paddle.to_tensor(
            num_total_samples, dtype='float32', stop_gradient=True)

        fam_cls = F.sigmoid_focal_loss(
            fam_cls_score1,
            feat_labels_one_hot,
            normalizer=num_total_samples,
            reduction='none')

        feat_label_weights = feat_label_weights.reshape(
            feat_label_weights.shape[0], 1)
        feat_label_weights = np.repeat(
            feat_label_weights, self.cls_out_channels, axis=1)
        feat_label_weights = paddle.to_tensor(
            feat_label_weights, stop_gradient=True)

        fam_cls = fam_cls * feat_label_weights
        fam_cls_total = paddle.sum(fam_cls)

        # step3: regression loss
        feat_bbox_targets = paddle.to_tensor(
            feat_bbox_targets, dtype='float32', stop_gradient=True)
        feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
        fam_bbox_pred = paddle.squeeze(fam_bbox_pred, axis=0)
        fam_bbox_pred = paddle.reshape(fam_bbox_pred, [-1, 5])
        fam_bbox = self.smooth_l1_loss(fam_bbox_pred, feat_bbox_targets)
        loss_weight = paddle.to_tensor(
            self.reg_loss_weight, dtype='float32', stop_gradient=True)
        fam_bbox = paddle.multiply(fam_bbox, loss_weight)
        feat_bbox_weights = paddle.to_tensor(
            feat_bbox_weights, stop_gradient=True)
        fam_bbox = fam_bbox * feat_bbox_weights
        fam_bbox_total = paddle.sum(fam_bbox) / num_total_samples

660 661
        fam_cls_loss_weight = paddle.to_tensor(
            self.cls_loss_weight[0], dtype='float32', stop_gradient=True)
C
cnn 已提交
662 663
        fam_cls_loss = fam_cls_total * fam_cls_loss_weight
        fam_reg_loss = paddle.add_n(fam_bbox_total)
C
cnn 已提交
664 665 666
        return fam_cls_loss, fam_reg_loss

    def get_odm_loss(self, odm_target, s2anet_head_out):
C
cnn 已提交
667 668 669 670 671
        (feat_labels, feat_label_weights, feat_bbox_targets, feat_bbox_weights,
         pos_inds, neg_inds) = odm_target
        odm_cls_score, odm_bbox_pred = s2anet_head_out

        # step1:  sample count
C
cnn 已提交
672 673 674
        num_total_samples = len(pos_inds) + len(
            neg_inds) if self.sampling else len(pos_inds)
        num_total_samples = max(1, num_total_samples)
C
cnn 已提交
675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720

        # step2: calc cls loss
        feat_labels = feat_labels.reshape(-1)
        feat_label_weights = feat_label_weights.reshape(-1)
        odm_cls_score = paddle.squeeze(odm_cls_score, axis=0)
        odm_cls_score1 = odm_cls_score

        feat_labels = paddle.to_tensor(feat_labels)
        feat_labels_one_hot = F.one_hot(feat_labels, self.cls_out_channels + 1)
        feat_labels_one_hot = feat_labels_one_hot[:, 1:]
        feat_labels_one_hot.stop_gradient = True

        num_total_samples = paddle.to_tensor(
            num_total_samples, dtype='float32', stop_gradient=True)

        odm_cls = F.sigmoid_focal_loss(
            odm_cls_score1,
            feat_labels_one_hot,
            normalizer=num_total_samples,
            reduction='none')

        feat_label_weights = feat_label_weights.reshape(
            feat_label_weights.shape[0], 1)
        feat_label_weights = np.repeat(
            feat_label_weights, self.cls_out_channels, axis=1)
        feat_label_weights = paddle.to_tensor(
            feat_label_weights, stop_gradient=True)

        odm_cls = odm_cls * feat_label_weights
        odm_cls_total = paddle.sum(odm_cls)

        # step3: regression loss
        feat_bbox_targets = paddle.to_tensor(
            feat_bbox_targets, dtype='float32', stop_gradient=True)
        feat_bbox_targets = paddle.reshape(feat_bbox_targets, [-1, 5])
        odm_bbox_pred = paddle.squeeze(odm_bbox_pred, axis=0)
        odm_bbox_pred = paddle.reshape(odm_bbox_pred, [-1, 5])
        odm_bbox = self.smooth_l1_loss(odm_bbox_pred, feat_bbox_targets)
        loss_weight = paddle.to_tensor(
            self.reg_loss_weight, dtype='float32', stop_gradient=True)
        odm_bbox = paddle.multiply(odm_bbox, loss_weight)
        feat_bbox_weights = paddle.to_tensor(
            feat_bbox_weights, stop_gradient=True)
        odm_bbox = odm_bbox * feat_bbox_weights
        odm_bbox_total = paddle.sum(odm_bbox) / num_total_samples

721
        odm_cls_loss_weight = paddle.to_tensor(
C
cnn 已提交
722 723 724
            self.cls_loss_weight[0], dtype='float32', stop_gradient=True)
        odm_cls_loss = odm_cls_total * odm_cls_loss_weight
        odm_reg_loss = paddle.add_n(odm_bbox_total)
C
cnn 已提交
725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746
        return odm_cls_loss, odm_reg_loss

    def get_loss(self, inputs):
        # inputs: im_id image im_shape scale_factor gt_bbox gt_class is_crowd

        # compute loss
        fam_cls_loss_lst = []
        fam_reg_loss_lst = []
        odm_cls_loss_lst = []
        odm_reg_loss_lst = []

        im_shape = inputs['im_shape']
        for im_id in range(im_shape.shape[0]):
            np_im_shape = inputs['im_shape'][im_id].numpy()
            np_scale_factor = inputs['scale_factor'][im_id].numpy()
            # data_format: (xc, yc, w, h, theta)
            gt_bboxes = inputs['gt_rbox'][im_id].numpy()
            gt_labels = inputs['gt_class'][im_id].numpy()
            is_crowd = inputs['is_crowd'][im_id].numpy()
            gt_labels = gt_labels + 1

            # FAM
C
cnn 已提交
747 748 749 750 751 752 753 754 755 756
            for idx, rbox_anchors in enumerate(self.rbox_anchors_list):
                rbox_anchors = rbox_anchors.numpy()
                rbox_anchors = rbox_anchors.reshape(-1, 5)
                im_fam_target = self.anchor_assign(rbox_anchors, gt_bboxes,
                                                   gt_labels, is_crowd)
                # feat
                fam_cls_feat = self.s2anet_head_out[0][idx][im_id]
                fam_reg_feat = self.s2anet_head_out[1][idx][im_id]

                im_s2anet_fam_feat = (fam_cls_feat, fam_reg_feat)
C
cnn 已提交
757
                im_fam_cls_loss, im_fam_reg_loss = self.get_fam_loss(
C
cnn 已提交
758
                    im_fam_target, im_s2anet_fam_feat)
C
cnn 已提交
759 760 761 762
                fam_cls_loss_lst.append(im_fam_cls_loss)
                fam_reg_loss_lst.append(im_fam_reg_loss)

            # ODM
C
cnn 已提交
763 764 765 766 767 768 769 770
            for idx, refine_anchors in enumerate(self.refine_anchor_list):
                refine_anchors = refine_anchors.numpy()
                refine_anchors = refine_anchors.reshape(-1, 5)
                im_odm_target = self.anchor_assign(refine_anchors, gt_bboxes,
                                                   gt_labels, is_crowd)

                odm_cls_feat = self.s2anet_head_out[2][idx][im_id]
                odm_reg_feat = self.s2anet_head_out[3][idx][im_id]
C
cnn 已提交
771

C
cnn 已提交
772
                im_s2anet_odm_feat = (odm_cls_feat, odm_reg_feat)
C
cnn 已提交
773
                im_odm_cls_loss, im_odm_reg_loss = self.get_odm_loss(
C
cnn 已提交
774
                    im_odm_target, im_s2anet_odm_feat)
C
cnn 已提交
775 776
                odm_cls_loss_lst.append(im_odm_cls_loss)
                odm_reg_loss_lst.append(im_odm_reg_loss)
C
cnn 已提交
777

C
cnn 已提交
778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821
        fam_cls_loss = paddle.add_n(fam_cls_loss_lst)
        fam_reg_loss = paddle.add_n(fam_reg_loss_lst)
        odm_cls_loss = paddle.add_n(odm_cls_loss_lst)
        odm_reg_loss = paddle.add_n(odm_reg_loss_lst)
        return {
            'fam_cls_loss': fam_cls_loss,
            'fam_reg_loss': fam_reg_loss,
            'odm_cls_loss': odm_cls_loss,
            'odm_reg_loss': odm_reg_loss
        }

    def get_bboxes(self, cls_score_list, bbox_pred_list, mlvl_anchors, nms_pre,
                   cls_out_channels, use_sigmoid_cls):
        assert len(cls_score_list) == len(bbox_pred_list) == len(mlvl_anchors)

        mlvl_bboxes = []
        mlvl_scores = []

        idx = 0
        for cls_score, bbox_pred, anchors in zip(cls_score_list, bbox_pred_list,
                                                 mlvl_anchors):
            cls_score = paddle.reshape(cls_score, [-1, cls_out_channels])
            if use_sigmoid_cls:
                scores = F.sigmoid(cls_score)
            else:
                scores = F.softmax(cls_score, axis=-1)

            # bbox_pred = bbox_pred.permute(1, 2, 0).reshape(-1, 5)
            bbox_pred = paddle.transpose(bbox_pred, [1, 2, 0])
            bbox_pred = paddle.reshape(bbox_pred, [-1, 5])
            anchors = paddle.reshape(anchors, [-1, 5])

            if nms_pre > 0 and scores.shape[0] > nms_pre:
                # Get maximum scores for foreground classes.
                if use_sigmoid_cls:
                    max_scores = paddle.max(scores, axis=1)
                else:
                    max_scores = paddle.max(scores[:, 1:], axis=1)

                topk_val, topk_inds = paddle.topk(max_scores, nms_pre)
                anchors = paddle.gather(anchors, topk_inds)
                bbox_pred = paddle.gather(bbox_pred, topk_inds)
                scores = paddle.gather(scores, topk_inds)

C
cnn 已提交
822 823
            bboxes = self.delta2rbox(anchors, bbox_pred, self.target_means,
                                     self.target_stds)
C
cnn 已提交
824 825 826 827 828 829 830 831 832
            mlvl_bboxes.append(bboxes)
            mlvl_scores.append(scores)

            idx += 1

        mlvl_bboxes = paddle.concat(mlvl_bboxes, axis=0)
        mlvl_scores = paddle.concat(mlvl_scores)

        return mlvl_scores, mlvl_bboxes