fcos_head.py 13.8 KB
Newer Older
F
Feng Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import math
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddle import ParamAttr
from paddle.nn.initializer import Normal, Constant

from ppdet.core.workspace import register
F
Feng Ni 已提交
27 28 29
from ppdet.modeling.layers import ConvNormLayer, MultiClassNMS

__all__ = ['FCOSFeat', 'FCOSHead']
F
Feng Ni 已提交
30 31 32


class ScaleReg(nn.Layer):
F
Feng Ni 已提交
33 34 35 36
    """
    Parameter for scaling the regression outputs.
    """

F
Feng Ni 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
    def __init__(self):
        super(ScaleReg, self).__init__()
        self.scale_reg = self.create_parameter(
            shape=[1],
            attr=ParamAttr(initializer=Constant(value=1.)),
            dtype="float32")

    def forward(self, inputs):
        out = inputs * self.scale_reg
        return out


@register
class FCOSFeat(nn.Layer):
    """
    FCOSFeat of FCOS

    Args:
        feat_in (int): The channel number of input Tensor.
        feat_out (int): The channel number of output Tensor.
        num_convs (int): The convolution number of the FCOSFeat.
        norm_type (str): Normalization type, 'bn'/'sync_bn'/'gn'.
        use_dcn (bool): Whether to use dcn in tower or not.
    """

    def __init__(self,
                 feat_in=256,
                 feat_out=256,
                 num_convs=4,
                 norm_type='bn',
                 use_dcn=False):
        super(FCOSFeat, self).__init__()
B
Blake 已提交
69 70
        self.feat_in = feat_in
        self.feat_out = feat_out
F
Feng Ni 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
        self.num_convs = num_convs
        self.norm_type = norm_type
        self.cls_subnet_convs = []
        self.reg_subnet_convs = []
        for i in range(self.num_convs):
            in_c = feat_in if i == 0 else feat_out

            cls_conv_name = 'fcos_head_cls_tower_conv_{}'.format(i)
            cls_conv = self.add_sublayer(
                cls_conv_name,
                ConvNormLayer(
                    ch_in=in_c,
                    ch_out=feat_out,
                    filter_size=3,
                    stride=1,
                    norm_type=norm_type,
                    use_dcn=use_dcn,
                    bias_on=True,
89
                    lr_scale=2.))
F
Feng Ni 已提交
90 91 92 93 94 95 96 97 98 99 100 101 102
            self.cls_subnet_convs.append(cls_conv)

            reg_conv_name = 'fcos_head_reg_tower_conv_{}'.format(i)
            reg_conv = self.add_sublayer(
                reg_conv_name,
                ConvNormLayer(
                    ch_in=in_c,
                    ch_out=feat_out,
                    filter_size=3,
                    stride=1,
                    norm_type=norm_type,
                    use_dcn=use_dcn,
                    bias_on=True,
103
                    lr_scale=2.))
F
Feng Ni 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
            self.reg_subnet_convs.append(reg_conv)

    def forward(self, fpn_feat):
        cls_feat = fpn_feat
        reg_feat = fpn_feat
        for i in range(self.num_convs):
            cls_feat = F.relu(self.cls_subnet_convs[i](cls_feat))
            reg_feat = F.relu(self.reg_subnet_convs[i](reg_feat))
        return cls_feat, reg_feat


@register
class FCOSHead(nn.Layer):
    """
    FCOSHead
    Args:
F
Feng Ni 已提交
120
        num_classes (int): Number of classes
F
Feng Ni 已提交
121
        fcos_feat (object): Instance of 'FCOSFeat'
F
Feng Ni 已提交
122 123 124 125
        fpn_stride (list): The stride of each FPN Layer
        prior_prob (float): Used to set the bias init for the class prediction layer
        norm_reg_targets (bool): Normalization the regression target if true
        centerness_on_reg (bool): The prediction of centerness on regression or clssification branch
F
Feng Ni 已提交
126 127 128 129
        num_shift (float): Relative offset between the center of the first shift and the top-left corner of img
        fcos_loss (object): Instance of 'FCOSLoss'
        nms (object): Instance of 'MultiClassNMS'
        trt (bool): Whether to use trt in nms of deploy
F
Feng Ni 已提交
130
    """
F
Feng Ni 已提交
131 132
    __inject__ = ['fcos_feat', 'fcos_loss', 'nms']
    __shared__ = ['num_classes', 'trt']
F
Feng Ni 已提交
133 134 135

    def __init__(self,
                 num_classes=80,
F
Feng Ni 已提交
136
                 fcos_feat='FCOSFeat',
F
Feng Ni 已提交
137 138
                 fpn_stride=[8, 16, 32, 64, 128],
                 prior_prob=0.01,
139
                 multiply_strides_reg_targets=False,
F
Feng Ni 已提交
140
                 norm_reg_targets=True,
F
Feng Ni 已提交
141 142
                 centerness_on_reg=True,
                 num_shift=0.5,
F
Feng Ni 已提交
143
                 sqrt_score=False,
F
Feng Ni 已提交
144 145 146
                 fcos_loss='FCOSLoss',
                 nms='MultiClassNMS',
                 trt=False):
F
Feng Ni 已提交
147 148 149 150 151 152 153 154
        super(FCOSHead, self).__init__()
        self.fcos_feat = fcos_feat
        self.num_classes = num_classes
        self.fpn_stride = fpn_stride
        self.prior_prob = prior_prob
        self.fcos_loss = fcos_loss
        self.norm_reg_targets = norm_reg_targets
        self.centerness_on_reg = centerness_on_reg
155
        self.multiply_strides_reg_targets = multiply_strides_reg_targets
F
Feng Ni 已提交
156 157 158 159
        self.num_shift = num_shift
        self.nms = nms
        if isinstance(self.nms, MultiClassNMS) and trt:
            self.nms.trt = trt
F
Feng Ni 已提交
160
        self.sqrt_score = sqrt_score
161
        self.is_teacher = False
F
Feng Ni 已提交
162 163 164 165 166 167 168 169 170 171 172

        conv_cls_name = "fcos_head_cls"
        bias_init_value = -math.log((1 - self.prior_prob) / self.prior_prob)
        self.fcos_head_cls = self.add_sublayer(
            conv_cls_name,
            nn.Conv2D(
                in_channels=256,
                out_channels=self.num_classes,
                kernel_size=3,
                stride=1,
                padding=1,
W
wangguanzhong 已提交
173 174
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
F
Feng Ni 已提交
175 176 177 178 179 180 181 182 183 184 185 186
                bias_attr=ParamAttr(
                    initializer=Constant(value=bias_init_value))))

        conv_reg_name = "fcos_head_reg"
        self.fcos_head_reg = self.add_sublayer(
            conv_reg_name,
            nn.Conv2D(
                in_channels=256,
                out_channels=4,
                kernel_size=3,
                stride=1,
                padding=1,
W
wangguanzhong 已提交
187 188 189
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(value=0))))
F
Feng Ni 已提交
190 191 192 193 194 195 196 197 198 199

        conv_centerness_name = "fcos_head_centerness"
        self.fcos_head_centerness = self.add_sublayer(
            conv_centerness_name,
            nn.Conv2D(
                in_channels=256,
                out_channels=1,
                kernel_size=3,
                stride=1,
                padding=1,
W
wangguanzhong 已提交
200 201 202
                weight_attr=ParamAttr(initializer=Normal(
                    mean=0., std=0.01)),
                bias_attr=ParamAttr(initializer=Constant(value=0))))
F
Feng Ni 已提交
203 204 205 206 207 208 209 210

        self.scales_regs = []
        for i in range(len(self.fpn_stride)):
            lvl = int(math.log(int(self.fpn_stride[i]), 2))
            feat_name = 'p{}_feat'.format(lvl)
            scale_reg = self.add_sublayer(feat_name, ScaleReg())
            self.scales_regs.append(scale_reg)

F
Feng Ni 已提交
211
    def _compute_locations_by_level(self, fpn_stride, feature, num_shift=0.5):
F
Feng Ni 已提交
212 213 214 215 216 217 218 219
        """
        Compute locations of anchor points of each FPN layer
        Args:
            fpn_stride (int): The stride of current FPN feature map
            feature (Tensor): Tensor of current FPN feature map
        Return:
            Anchor points locations of current FPN feature map
        """
F
Feng Ni 已提交
220
        h, w = feature.shape[2], feature.shape[3]
F
Feng Ni 已提交
221 222 223 224
        shift_x = paddle.arange(0, w * fpn_stride, fpn_stride)
        shift_y = paddle.arange(0, h * fpn_stride, fpn_stride)
        shift_x = paddle.unsqueeze(shift_x, axis=0)
        shift_y = paddle.unsqueeze(shift_y, axis=1)
F
Feng Ni 已提交
225 226
        shift_x = paddle.expand(shift_x, shape=[h, w])
        shift_y = paddle.expand(shift_y, shape=[h, w])
F
Feng Ni 已提交
227

F
Feng Ni 已提交
228 229
        shift_x = paddle.reshape(shift_x, shape=[-1])
        shift_y = paddle.reshape(shift_y, shape=[-1])
F
Feng Ni 已提交
230
        location = paddle.stack(
F
Feng Ni 已提交
231
            [shift_x, shift_y], axis=-1) + float(fpn_stride * num_shift)
F
Feng Ni 已提交
232 233
        return location

F
Feng Ni 已提交
234
    def forward(self, fpn_feats, targets=None):
F
Feng Ni 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
        assert len(fpn_feats) == len(
            self.fpn_stride
        ), "The size of fpn_feats is not equal to size of fpn_stride"
        cls_logits_list = []
        bboxes_reg_list = []
        centerness_list = []
        for scale_reg, fpn_stride, fpn_feat in zip(self.scales_regs,
                                                   self.fpn_stride, fpn_feats):
            fcos_cls_feat, fcos_reg_feat = self.fcos_feat(fpn_feat)
            cls_logits = self.fcos_head_cls(fcos_cls_feat)
            bbox_reg = scale_reg(self.fcos_head_reg(fcos_reg_feat))
            if self.centerness_on_reg:
                centerness = self.fcos_head_centerness(fcos_reg_feat)
            else:
                centerness = self.fcos_head_centerness(fcos_cls_feat)
            if self.norm_reg_targets:
                bbox_reg = F.relu(bbox_reg)
252
                if self.multiply_strides_reg_targets:
F
Feng Ni 已提交
253
                    bbox_reg = bbox_reg * fpn_stride
254 255 256 257 258
                else:
                    if not self.training or targets.get(
                            'get_data',
                            False) or targets.get('is_teacher', False):
                        bbox_reg = bbox_reg * fpn_stride
F
Feng Ni 已提交
259 260 261 262 263 264
            else:
                bbox_reg = paddle.exp(bbox_reg)
            cls_logits_list.append(cls_logits)
            bboxes_reg_list.append(bbox_reg)
            centerness_list.append(centerness)

265 266 267 268 269 270 271 272 273 274
        if targets is not None:
            self.is_teacher = targets.get('is_teacher', False)
            if self.is_teacher:
                return [cls_logits_list, bboxes_reg_list, centerness_list]

        if self.training and targets is not None:
            get_data = targets.get('get_data', False)
            if get_data:
                return [cls_logits_list, bboxes_reg_list, centerness_list]

F
Feng Ni 已提交
275 276 277 278 279 280 281 282 283 284
            losses = {}
            fcos_head_outs = [cls_logits_list, bboxes_reg_list, centerness_list]
            losses_fcos = self.get_loss(fcos_head_outs, targets)
            losses.update(losses_fcos)

            total_loss = paddle.add_n(list(losses.values()))
            losses.update({'loss': total_loss})
            return losses
        else:
            # eval or infer
F
Feng Ni 已提交
285 286
            locations_list = []
            for fpn_stride, feature in zip(self.fpn_stride, fpn_feats):
F
Feng Ni 已提交
287 288
                location = self._compute_locations_by_level(fpn_stride, feature,
                                                            self.num_shift)
F
Feng Ni 已提交
289 290
                locations_list.append(location)

F
Feng Ni 已提交
291 292 293 294 295
            fcos_head_outs = [
                locations_list, cls_logits_list, bboxes_reg_list,
                centerness_list
            ]
            return fcos_head_outs
F
Feng Ni 已提交
296

F
Feng Ni 已提交
297
    def get_loss(self, fcos_head_outs, targets):
F
Feng Ni 已提交
298
        cls_logits, bboxes_reg, centerness = fcos_head_outs
F
Feng Ni 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316

        # get labels,reg_target,centerness
        tag_labels, tag_bboxes, tag_centerness = [], [], []
        for i in range(len(self.fpn_stride)):
            k_lbl = 'labels{}'.format(i)
            if k_lbl in targets:
                tag_labels.append(targets[k_lbl])
            k_box = 'reg_target{}'.format(i)
            if k_box in targets:
                tag_bboxes.append(targets[k_box])
            k_ctn = 'centerness{}'.format(i)
            if k_ctn in targets:
                tag_centerness.append(targets[k_ctn])

        losses_fcos = self.fcos_loss(cls_logits, bboxes_reg, centerness,
                                     tag_labels, tag_bboxes, tag_centerness)
        return losses_fcos

F
Feng Ni 已提交
317 318 319 320 321 322
    def _post_process_by_level(self,
                               locations,
                               box_cls,
                               box_reg,
                               box_ctn,
                               sqrt_score=False):
F
Feng Ni 已提交
323 324 325
        box_scores = F.sigmoid(box_cls).flatten(2).transpose([0, 2, 1])
        box_centerness = F.sigmoid(box_ctn).flatten(2).transpose([0, 2, 1])
        pred_scores = box_scores * box_centerness
F
Feng Ni 已提交
326 327
        if sqrt_score:
            pred_scores = paddle.sqrt(pred_scores)
F
Feng Ni 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347

        box_reg_ch_last = box_reg.flatten(2).transpose([0, 2, 1])
        box_reg_decoding = paddle.stack(
            [
                locations[:, 0] - box_reg_ch_last[:, :, 0],
                locations[:, 1] - box_reg_ch_last[:, :, 1],
                locations[:, 0] + box_reg_ch_last[:, :, 2],
                locations[:, 1] + box_reg_ch_last[:, :, 3]
            ],
            axis=1)
        pred_boxes = box_reg_decoding.transpose([0, 2, 1])

        return pred_scores, pred_boxes

    def post_process(self, fcos_head_outs, scale_factor):
        locations, cls_logits, bboxes_reg, centerness = fcos_head_outs
        pred_bboxes, pred_scores = [], []

        for pts, cls, reg, ctn in zip(locations, cls_logits, bboxes_reg,
                                      centerness):
F
Feng Ni 已提交
348 349
            scores, boxes = self._post_process_by_level(pts, cls, reg, ctn,
                                                        self.sqrt_score)
F
Feng Ni 已提交
350 351 352 353 354 355 356 357 358 359 360 361 362 363
            pred_scores.append(scores)
            pred_bboxes.append(boxes)
        pred_bboxes = paddle.concat(pred_bboxes, axis=1)
        pred_scores = paddle.concat(pred_scores, axis=1)

        # scale bbox to origin
        scale_y, scale_x = paddle.split(scale_factor, 2, axis=-1)
        scale_factor = paddle.concat(
            [scale_x, scale_y, scale_x, scale_y], axis=-1).reshape([-1, 1, 4])
        pred_bboxes /= scale_factor

        pred_scores = pred_scores.transpose([0, 2, 1])
        bbox_pred, bbox_num, _ = self.nms(pred_bboxes, pred_scores)
        return bbox_pred, bbox_num