coco.py 22.5 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

import os
16 17 18 19 20
import copy
try:
    from collections.abc import Sequence
except Exception:
    from collections import Sequence
Q
qingqing01 已提交
21 22 23 24 25 26 27
import numpy as np
from ppdet.core.workspace import register, serializable
from .dataset import DetDataset

from ppdet.utils.logger import setup_logger
logger = setup_logger(__name__)

28 29
__all__ = ['COCODataSet', 'SlicedCOCODataSet', 'SemiCOCODataSet']

Q
qingqing01 已提交
30 31 32 33

@register
@serializable
class COCODataSet(DetDataset):
F
Feng Ni 已提交
34 35 36 37 38 39 40 41 42
    """
    Load dataset with COCO format.

    Args:
        dataset_dir (str): root directory for dataset.
        image_dir (str): directory for images.
        anno_path (str): coco annotation file path.
        data_fields (list): key name of data dictionary, at least have 'image'.
        sample_num (int): number of samples to load, -1 means all.
43 44 45 46 47
        load_crowd (bool): whether to load crowded ground-truth. 
            False as default
        allow_empty (bool): whether to load empty entry. False as default
        empty_ratio (float): the ratio of empty record number to total 
            record's, if empty_ratio is out of [0. ,1.), do not sample the 
48
            records and use all the empty entries. 1. as default
49
        repeat (int): repeat times for dataset, use in benchmark.
F
Feng Ni 已提交
50 51
    """

Q
qingqing01 已提交
52 53 54 55 56
    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
57 58
                 sample_num=-1,
                 load_crowd=False,
59
                 allow_empty=False,
60 61 62 63 64 65 66 67 68
                 empty_ratio=1.,
                 repeat=1):
        super(COCODataSet, self).__init__(
            dataset_dir,
            image_dir,
            anno_path,
            data_fields,
            sample_num,
            repeat=repeat)
Q
qingqing01 已提交
69 70
        self.load_image_only = False
        self.load_semantic = False
71 72 73 74 75 76 77 78 79
        self.load_crowd = load_crowd
        self.allow_empty = allow_empty
        self.empty_ratio = empty_ratio

    def _sample_empty(self, records, num):
        # if empty_ratio is out of [0. ,1.), do not sample the records
        if self.empty_ratio < 0. or self.empty_ratio >= 1.:
            return records
        import random
80 81
        sample_num = min(
            int(num * self.empty_ratio / (1 - self.empty_ratio)), len(records))
82 83
        records = random.sample(records, sample_num)
        return records
Q
qingqing01 已提交
84

85
    def parse_dataset(self):
Q
qingqing01 已提交
86 87 88 89 90 91 92 93
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
94
        img_ids.sort()
Q
qingqing01 已提交
95 96
        cat_ids = coco.getCatIds()
        records = []
97
        empty_records = []
Q
qingqing01 已提交
98 99
        ct = 0

K
Kaipeng Deng 已提交
100 101
        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
        self.cname2cid = dict({
Q
qingqing01 已提交
102
            coco.loadCats(catid)[0]['name']: clsid
K
Kaipeng Deng 已提交
103
            for catid, clsid in self.catid2clsid.items()
Q
qingqing01 已提交
104 105 106 107 108 109 110 111
        })

        if 'annotations' not in coco.dataset:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))

        for img_id in img_ids:
112
            img_anno = coco.loadImgs([img_id])[0]
Q
qingqing01 已提交
113 114 115 116 117 118
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
119
            is_empty = False
Q
qingqing01 已提交
120 121 122 123 124 125 126 127 128 129 130
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

131 132 133 134 135 136 137
            coco_rec = {
                'im_file': im_path,
                'im_id': np.array([img_id]),
                'h': im_h,
                'w': im_w,
            } if 'image' in self.data_fields else {}

Q
qingqing01 已提交
138
            if not self.load_image_only:
139 140
                ins_anno_ids = coco.getAnnIds(
                    imgIds=[img_id], iscrowd=None if self.load_crowd else False)
Q
qingqing01 已提交
141 142 143
                instances = coco.loadAnns(ins_anno_ids)

                bboxes = []
144
                is_rbox_anno = False
Q
qingqing01 已提交
145 146
                for inst in instances:
                    # check gt bbox
147 148
                    if inst.get('ignore', False):
                        continue
Q
qingqing01 已提交
149 150 151 152 153
                    if 'bbox' not in inst.keys():
                        continue
                    else:
                        if not any(np.array(inst['bbox'])):
                            continue
C
cnn 已提交
154

W
wangxinxin08 已提交
155 156 157
                    x1, y1, box_w, box_h = inst['bbox']
                    x2 = x1 + box_w
                    y2 = y1 + box_h
158 159 160 161 162
                    eps = 1e-5
                    if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
                        inst['clean_bbox'] = [
                            round(float(x), 3) for x in [x1, y1, x2, y2]
                        ]
Q
qingqing01 已提交
163 164 165 166 167 168 169 170
                        bboxes.append(inst)
                    else:
                        logger.warning(
                            'Found an invalid bbox in annotations: im_id: {}, '
                            'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                img_id, float(inst['area']), x1, y1, x2, y2))

                num_bbox = len(bboxes)
171
                if num_bbox <= 0 and not self.allow_empty:
Q
qingqing01 已提交
172
                    continue
173 174
                elif num_bbox <= 0:
                    is_empty = True
Q
qingqing01 已提交
175 176 177 178 179 180 181 182 183

                gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
                gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
                is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_poly = [None] * num_bbox

                has_segmentation = False
                for i, box in enumerate(bboxes):
                    catid = box['category_id']
K
Kaipeng Deng 已提交
184
                    gt_class[i][0] = self.catid2clsid[catid]
Q
qingqing01 已提交
185 186 187 188
                    gt_bbox[i, :] = box['clean_bbox']
                    is_crowd[i][0] = box['iscrowd']
                    # check RLE format 
                    if 'segmentation' in box and box['iscrowd'] == 1:
W
wangxinxin08 已提交
189
                        gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
190
                    elif 'segmentation' in box and box['segmentation']:
191 192 193 194 195 196 197 198 199
                        if not np.array(box['segmentation']
                                        ).size > 0 and not self.allow_empty:
                            bboxes.pop(i)
                            gt_poly.pop(i)
                            np.delete(is_crowd, i)
                            np.delete(gt_class, i)
                            np.delete(gt_bbox, i)
                        else:
                            gt_poly[i] = box['segmentation']
Q
qingqing01 已提交
200 201
                        has_segmentation = True

202 203
                if has_segmentation and not any(
                        gt_poly) and not self.allow_empty:
Q
qingqing01 已提交
204 205
                    continue

W
wangxinxin08 已提交
206 207 208 209 210 211
                gt_rec = {
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_bbox': gt_bbox,
                    'gt_poly': gt_poly,
                }
C
cnn 已提交
212

Q
qingqing01 已提交
213 214 215 216 217 218 219 220 221 222 223 224
                for k, v in gt_rec.items():
                    if k in self.data_fields:
                        coco_rec[k] = v

                # TODO: remove load_semantic
                if self.load_semantic and 'semantic' in self.data_fields:
                    seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
                                            'train2017', im_fname[:-3] + 'png')
                    coco_rec.update({'semantic': seg_path})

            logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
                im_path, img_id, im_h, im_w))
225 226 227 228
            if is_empty:
                empty_records.append(coco_rec)
            else:
                records.append(coco_rec)
Q
qingqing01 已提交
229 230 231
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
232
        assert ct > 0, 'not found any coco record in %s' % (anno_path)
233 234
        logger.info('Load [{} samples valid, {} samples invalid] in file {}.'.
                    format(ct, len(img_ids) - ct, anno_path))
235
        if self.allow_empty and len(empty_records) > 0:
236 237
            empty_records = self._sample_empty(empty_records, len(records))
            records += empty_records
K
Kaipeng Deng 已提交
238
        self.roidbs = records
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361


@register
@serializable
class SlicedCOCODataSet(COCODataSet):
    """Sliced COCODataSet"""

    def __init__(
            self,
            dataset_dir=None,
            image_dir=None,
            anno_path=None,
            data_fields=['image'],
            sample_num=-1,
            load_crowd=False,
            allow_empty=False,
            empty_ratio=1.,
            repeat=1,
            sliced_size=[640, 640],
            overlap_ratio=[0.25, 0.25], ):
        super(SlicedCOCODataSet, self).__init__(
            dataset_dir=dataset_dir,
            image_dir=image_dir,
            anno_path=anno_path,
            data_fields=data_fields,
            sample_num=sample_num,
            load_crowd=load_crowd,
            allow_empty=allow_empty,
            empty_ratio=empty_ratio,
            repeat=repeat, )
        self.sliced_size = sliced_size
        self.overlap_ratio = overlap_ratio

    def parse_dataset(self):
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
        img_ids.sort()
        cat_ids = coco.getCatIds()
        records = []
        empty_records = []
        ct = 0
        ct_sub = 0

        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
        self.cname2cid = dict({
            coco.loadCats(catid)[0]['name']: clsid
            for catid, clsid in self.catid2clsid.items()
        })

        if 'annotations' not in coco.dataset:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))
        try:
            import sahi
            from sahi.slicing import slice_image
        except Exception as e:
            logger.error(
                'sahi not found, plaese install sahi. '
                'for example: `pip install sahi`, see https://github.com/obss/sahi.'
            )
            raise e

        sub_img_ids = 0
        for img_id in img_ids:
            img_anno = coco.loadImgs([img_id])[0]
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
            is_empty = False
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

            slice_image_result = sahi.slicing.slice_image(
                image=im_path,
                slice_height=self.sliced_size[0],
                slice_width=self.sliced_size[1],
                overlap_height_ratio=self.overlap_ratio[0],
                overlap_width_ratio=self.overlap_ratio[1])

            sub_img_num = len(slice_image_result)
            for _ind in range(sub_img_num):
                im = slice_image_result.images[_ind]
                coco_rec = {
                    'image': im,
                    'im_id': np.array([sub_img_ids + _ind]),
                    'h': im.shape[0],
                    'w': im.shape[1],
                    'ori_im_id': np.array([img_id]),
                    'st_pix': np.array(
                        slice_image_result.starting_pixels[_ind],
                        dtype=np.float32),
                    'is_last': 1 if _ind == sub_img_num - 1 else 0,
                } if 'image' in self.data_fields else {}
                records.append(coco_rec)
            ct_sub += sub_img_num
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
        assert ct > 0, 'not found any coco record in %s' % (anno_path)
        logger.info('{} samples and slice to {} sub_samples in file {}'.format(
            ct, ct_sub, anno_path))
        if self.allow_empty and len(empty_records) > 0:
            empty_records = self._sample_empty(empty_records, len(records))
            records += empty_records
        self.roidbs = records
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578


@register
@serializable
class SemiCOCODataSet(COCODataSet):
    """Semi-COCODataSet used for supervised and unsupervised dataSet"""

    def __init__(self,
                 dataset_dir=None,
                 image_dir=None,
                 anno_path=None,
                 data_fields=['image'],
                 sample_num=-1,
                 load_crowd=False,
                 allow_empty=False,
                 empty_ratio=1.,
                 repeat=1,
                 supervised=True):
        super(SemiCOCODataSet, self).__init__(
            dataset_dir, image_dir, anno_path, data_fields, sample_num,
            load_crowd, allow_empty, empty_ratio, repeat)
        self.supervised = supervised
        self.length = -1  # defalut -1 means all

    def parse_dataset(self):
        anno_path = os.path.join(self.dataset_dir, self.anno_path)
        image_dir = os.path.join(self.dataset_dir, self.image_dir)

        assert anno_path.endswith('.json'), \
            'invalid coco annotation file: ' + anno_path
        from pycocotools.coco import COCO
        coco = COCO(anno_path)
        img_ids = coco.getImgIds()
        img_ids.sort()
        cat_ids = coco.getCatIds()
        records = []
        empty_records = []
        ct = 0

        self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)})
        self.cname2cid = dict({
            coco.loadCats(catid)[0]['name']: clsid
            for catid, clsid in self.catid2clsid.items()
        })

        if 'annotations' not in coco.dataset or self.supervised == False:
            self.load_image_only = True
            logger.warning('Annotation file: {} does not contains ground truth '
                           'and load image information only.'.format(anno_path))

        for img_id in img_ids:
            img_anno = coco.loadImgs([img_id])[0]
            im_fname = img_anno['file_name']
            im_w = float(img_anno['width'])
            im_h = float(img_anno['height'])

            im_path = os.path.join(image_dir,
                                   im_fname) if image_dir else im_fname
            is_empty = False
            if not os.path.exists(im_path):
                logger.warning('Illegal image file: {}, and it will be '
                               'ignored'.format(im_path))
                continue

            if im_w < 0 or im_h < 0:
                logger.warning('Illegal width: {} or height: {} in annotation, '
                               'and im_id: {} will be ignored'.format(
                                   im_w, im_h, img_id))
                continue

            coco_rec = {
                'im_file': im_path,
                'im_id': np.array([img_id]),
                'h': im_h,
                'w': im_w,
            } if 'image' in self.data_fields else {}

            if not self.load_image_only:
                ins_anno_ids = coco.getAnnIds(
                    imgIds=[img_id], iscrowd=None if self.load_crowd else False)
                instances = coco.loadAnns(ins_anno_ids)

                bboxes = []
                is_rbox_anno = False
                for inst in instances:
                    # check gt bbox
                    if inst.get('ignore', False):
                        continue
                    if 'bbox' not in inst.keys():
                        continue
                    else:
                        if not any(np.array(inst['bbox'])):
                            continue

                    x1, y1, box_w, box_h = inst['bbox']
                    x2 = x1 + box_w
                    y2 = y1 + box_h
                    eps = 1e-5
                    if inst['area'] > 0 and x2 - x1 > eps and y2 - y1 > eps:
                        inst['clean_bbox'] = [
                            round(float(x), 3) for x in [x1, y1, x2, y2]
                        ]
                        bboxes.append(inst)
                    else:
                        logger.warning(
                            'Found an invalid bbox in annotations: im_id: {}, '
                            'area: {} x1: {}, y1: {}, x2: {}, y2: {}.'.format(
                                img_id, float(inst['area']), x1, y1, x2, y2))

                num_bbox = len(bboxes)
                if num_bbox <= 0 and not self.allow_empty:
                    continue
                elif num_bbox <= 0:
                    is_empty = True

                gt_bbox = np.zeros((num_bbox, 4), dtype=np.float32)
                gt_class = np.zeros((num_bbox, 1), dtype=np.int32)
                is_crowd = np.zeros((num_bbox, 1), dtype=np.int32)
                gt_poly = [None] * num_bbox

                has_segmentation = False
                for i, box in enumerate(bboxes):
                    catid = box['category_id']
                    gt_class[i][0] = self.catid2clsid[catid]
                    gt_bbox[i, :] = box['clean_bbox']
                    is_crowd[i][0] = box['iscrowd']
                    # check RLE format 
                    if 'segmentation' in box and box['iscrowd'] == 1:
                        gt_poly[i] = [[0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]
                    elif 'segmentation' in box and box['segmentation']:
                        if not np.array(box['segmentation']
                                        ).size > 0 and not self.allow_empty:
                            bboxes.pop(i)
                            gt_poly.pop(i)
                            np.delete(is_crowd, i)
                            np.delete(gt_class, i)
                            np.delete(gt_bbox, i)
                        else:
                            gt_poly[i] = box['segmentation']
                        has_segmentation = True

                if has_segmentation and not any(
                        gt_poly) and not self.allow_empty:
                    continue

                gt_rec = {
                    'is_crowd': is_crowd,
                    'gt_class': gt_class,
                    'gt_bbox': gt_bbox,
                    'gt_poly': gt_poly,
                }

                for k, v in gt_rec.items():
                    if k in self.data_fields:
                        coco_rec[k] = v

                # TODO: remove load_semantic
                if self.load_semantic and 'semantic' in self.data_fields:
                    seg_path = os.path.join(self.dataset_dir, 'stuffthingmaps',
                                            'train2017', im_fname[:-3] + 'png')
                    coco_rec.update({'semantic': seg_path})

            logger.debug('Load file: {}, im_id: {}, h: {}, w: {}.'.format(
                im_path, img_id, im_h, im_w))
            if is_empty:
                empty_records.append(coco_rec)
            else:
                records.append(coco_rec)
            ct += 1
            if self.sample_num > 0 and ct >= self.sample_num:
                break
        assert ct > 0, 'not found any coco record in %s' % (anno_path)
        logger.info('Load [{} samples valid, {} samples invalid] in file {}.'.
                    format(ct, len(img_ids) - ct, anno_path))
        if self.allow_empty and len(empty_records) > 0:
            empty_records = self._sample_empty(empty_records, len(records))
            records += empty_records
        self.roidbs = records

        if self.supervised:
            logger.info(f'Use {len(self.roidbs)} sup_samples data as LABELED')
        else:
            if self.length > 0:  # unsup length will be decide by sup length
                all_roidbs = self.roidbs.copy()
                selected_idxs = [
                    np.random.choice(len(all_roidbs))
                    for _ in range(self.length)
                ]
                self.roidbs = [all_roidbs[i] for i in selected_idxs]
            logger.info(
                f'Use {len(self.roidbs)} unsup_samples data as UNLABELED')

    def __getitem__(self, idx):
        n = len(self.roidbs)
        if self.repeat > 1:
            idx %= n
        # data batch
        roidb = copy.deepcopy(self.roidbs[idx])
        if self.mixup_epoch == 0 or self._epoch < self.mixup_epoch:
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.cutmix_epoch == 0 or self._epoch < self.cutmix_epoch:
            idx = np.random.randint(n)
            roidb = [roidb, copy.deepcopy(self.roidbs[idx])]
        elif self.mosaic_epoch == 0 or self._epoch < self.mosaic_epoch:
            roidb = [roidb, ] + [
                copy.deepcopy(self.roidbs[np.random.randint(n)])
                for _ in range(4)
            ]
        if isinstance(roidb, Sequence):
            for r in roidb:
                r['curr_iter'] = self._curr_iter
        else:
            roidb['curr_iter'] = self._curr_iter
        self._curr_iter += 1

        return self.transform(roidb)