api_train.py 4.4 KB
Newer Older
E
emailweixu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2016 Baidu, Inc. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import itertools
import random

from paddle.trainer.config_parser import parse_config
from py_paddle import swig_paddle as api
from py_paddle import DataProviderConverter
from paddle.trainer.PyDataProvider2 \
    import integer_value, integer_value_sequence, sparse_binary_vector

25

E
emailweixu 已提交
26 27
def parse_arguments():
    parser = argparse.ArgumentParser()
28 29
    parser.add_argument(
        "--train_data", type=str, required=False, help="train data file")
E
emailweixu 已提交
30
    parser.add_argument("--test_data", type=str, help="test data file")
31 32
    parser.add_argument(
        "--config", type=str, required=True, help="config file name")
E
emailweixu 已提交
33
    parser.add_argument("--dict_file", required=True, help="dictionary file")
34 35 36 37 38 39 40 41 42 43 44
    parser.add_argument(
        "--seq", default=1, type=int, help="whether use sequence training")
    parser.add_argument(
        "--use_gpu", default=0, type=int, help="whether use GPU for training")
    parser.add_argument(
        "--trainer_count",
        default=1,
        type=int,
        help="Number of threads for training")
    parser.add_argument(
        "--num_passes", default=5, type=int, help="Number of training passes")
E
emailweixu 已提交
45 46
    return parser.parse_args()

47

E
emailweixu 已提交
48 49
UNK_IDX = 0

50

E
emailweixu 已提交
51 52 53 54 55 56 57 58
def load_data(file_name, word_dict):
    with open(file_name, 'r') as f:
        for line in f:
            label, comment = line.strip().split('\t')
            words = comment.split()
            word_slot = [word_dict.get(w, UNK_IDX) for w in words]
            yield word_slot, int(label)

59

E
emailweixu 已提交
60 61 62 63 64 65 66 67
def load_dict(dict_file):
    word_dict = dict()
    with open(dict_file, 'r') as f:
        for i, line in enumerate(f):
            w = line.strip().split()[0]
            word_dict[w] = i
    return word_dict

68

E
emailweixu 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
def main():
    options = parse_arguments()
    api.initPaddle("--use_gpu=%s" % options.use_gpu,
                   "--trainer_count=%s" % options.trainer_count)

    word_dict = load_dict(options.dict_file)
    train_dataset = list(load_data(options.train_data, word_dict))
    if options.test_data:
        test_dataset = list(load_data(options.test_data, word_dict))
    else:
        test_dataset = None

    trainer_config = parse_config(options.config,
                                  "dict_file=%s" % options.dict_file)
    # No need to have data provider for trainer
    trainer_config.ClearField('data_config')
    trainer_config.ClearField('test_data_config')

    # create a GradientMachine from the model configuratin
    model = api.GradientMachine.createFromConfigProto(
        trainer_config.model_config)
    # create a trainer for the gradient machine
    trainer = api.Trainer.create(trainer_config, model)

    # create a data converter which converts data to PaddlePaddle
    # internal format
    input_types = [
96 97 98
        integer_value_sequence(len(word_dict)) if options.seq else
        sparse_binary_vector(len(word_dict)), integer_value(2)
    ]
E
emailweixu 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111
    converter = DataProviderConverter(input_types)

    batch_size = trainer_config.opt_config.batch_size
    trainer.startTrain()
    for train_pass in xrange(options.num_passes):
        trainer.startTrainPass()
        random.shuffle(train_dataset)
        for pos in xrange(0, len(train_dataset), batch_size):
            batch = itertools.islice(train_dataset, pos, pos + batch_size)
            size = min(batch_size, len(train_dataset) - pos)
            trainer.trainOneDataBatch(size, converter(batch))
        trainer.finishTrainPass()
        if test_dataset:
112
            trainer.startTestPeriod()
E
emailweixu 已提交
113 114 115 116 117 118 119
            for pos in xrange(0, len(test_dataset), batch_size):
                batch = itertools.islice(test_dataset, pos, pos + batch_size)
                size = min(batch_size, len(test_dataset) - pos)
                trainer.testOneDataBatch(size, converter(batch))
            trainer.finishTestPeriod()
    trainer.finishTrain()

120

E
emailweixu 已提交
121 122
if __name__ == '__main__':
    main()