trt_int8_calibrator.cc 5.0 KB
Newer Older
N
nhzlx 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h"
#include "glog/logging.h"

namespace paddle {
namespace inference {
namespace tensorrt {

// set the batch size before constructing the thread to execute engine
int TRTInt8Calibrator::getBatchSize() const { return batch_size_; }

TRTInt8Calibrator::TRTInt8Calibrator(
    const std::unordered_map<std::string, size_t>& buffers, int batch_size,
    std::string engine_name, const platform::Place place)
N
nhzlx 已提交
28
    : batch_size_(batch_size), engine_name_(engine_name) {
N
nhzlx 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
  int i = 0;
  VLOG(4) << "Init a new calibrator: " << engine_name_;
  for (const auto it : buffers) {
    framework::Tensor temp_tensor;
    std::string input_name = it.first;
    int data_size = it.second;
    int num_ele = data_size / sizeof(int16_t);
    framework::DDim data_shape = framework::make_ddim({num_ele});
    temp_tensor.Resize(data_shape);
    data_tensors_.push_back(temp_tensor);
    data_buffers_[input_name] = std::pair<void*, size_t>(
        static_cast<void*>(temp_tensor.mutable_data<int16_t>(place)), num_ele);
    i += 1;
  }
}

TRTInt8Calibrator::TRTInt8Calibrator(const std::string& calib_data)
    : batch_size_(0),
      calib_running_(false),
      data_is_set_(false),
      done_(true),
      calibration_table_(calib_data) {}

void TRTInt8Calibrator::waitAndSetDone() {
  std::unique_lock<std::mutex> lk(mut_);
  while ((calib_running_ || data_is_set_) && !done_) cond_.wait(lk);
  if (!done_) {
    done_ = true;
    cond_.notify_all();
  }
}

N
nhzlx 已提交
61 62
// There might be more than one input for trt subgraph,
// So, we use a map to store input information.
N
nhzlx 已提交
63 64 65 66
bool TRTInt8Calibrator::setBatch(
    const std::unordered_map<std::string, void*>& data) {
  VLOG(3) << "set batch: " << engine_name_;
  std::unique_lock<std::mutex> lk(mut_);
N
nhzlx 已提交
67 68 69 70
  //  There is a producer and a consumer. The producer set the batch data and
  //  the consumer get the batch data. The size of the data pool is one.
  //  So, the producer has to wait for the consumer to finish processing before
  //  they can set the data.
N
nhzlx 已提交
71
  while ((calib_running_ || data_is_set_) && (!done_)) cond_.wait(lk);
N
nhzlx 已提交
72 73
  // The done_ is set to true using waitAndSetDone, When all calibration data
  // are processed.
N
nhzlx 已提交
74 75 76
  if (done_) return false;

  // Sets the batch.
N
nhzlx 已提交
77
  for (const auto& it : data) {
N
nhzlx 已提交
78 79 80 81 82 83
    auto dataptr = data_buffers_.find(it.first);
    if (dataptr == data_buffers_.end()) {
      LOG(FATAL) << "FATAL " << engine_name_ << " input name '" << it.first
                 << "' does not match with the buffer names";
    }
    const auto& d = dataptr->second;
N
nhzlx 已提交
84 85 86
    PADDLE_ENFORCE(
        cudaMemcpy(d.first, it.second, d.second, cudaMemcpyDeviceToDevice),
        "Fail to cudaMemcpy %s for %s", engine_name_, it.first);
N
nhzlx 已提交
87 88 89 90 91 92 93 94 95 96 97
  }

  data_is_set_ = true;
  cond_.notify_all();
  return true;
}

bool TRTInt8Calibrator::getBatch(void** bindings, const char** names,
                                 int num_bindings) {
  VLOG(4) << "get batch: " << engine_name_;
  std::unique_lock<std::mutex> lk(mut_);
N
nhzlx 已提交
98 99
  // The consumer has just finished processing a data.
  // The producer can set the data again.
N
nhzlx 已提交
100 101 102
  calib_running_ = false;
  cond_.notify_all();

N
nhzlx 已提交
103
  // As long as there is data in the pool, the consumer can get it.
N
nhzlx 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
  while (!data_is_set_ && !done_) cond_.wait(lk);
  if (done_) return false;

  // Gets the batch
  for (int i = 0; i < num_bindings; i++) {
    auto it = data_buffers_.find(names[i]);
    if (it == data_buffers_.end()) {
      LOG(FATAL) << "Calibration engine asked for unknown tensor name '"
                 << names[i] << "' at position " << i;
    }
    bindings[i] = it->second.first;
  }

  data_is_set_ = false;
  calib_running_ = true;
  VLOG(4) << "get batch done: " << engine_name_;
  return true;
}

void TRTInt8Calibrator::setDone() {
  std::unique_lock<std::mutex> lk(mut_);
  done_ = true;
  cond_.notify_all();
}

N
nhzlx 已提交
129
const void* TRTInt8Calibrator::readCalibrationCache(size_t& length) {
N
nhzlx 已提交
130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
  if (calibration_table_.empty()) return nullptr;
  length = calibration_table_.size();
  return calibration_table_.data();
}

void TRTInt8Calibrator::writeCalibrationCache(const void* ptr,
                                              std::size_t length) {
  calibration_table_ = std::string((const char*)ptr, length);
  VLOG(4) << "Got calibration data for " << engine_name_ << " " << ptr
          << " length=" << length;
}
TRTInt8Calibrator::~TRTInt8Calibrator() {
  VLOG(4) << "Destroying calibrator for " << engine_name_;
}

}  // namespace tensorrt
}  // namespace inference
}  // namespace paddle