MODEL_ZOO.md 13.9 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11
# Model Zoo and Benchmark
## Environment

- Python 2.7.1
- PaddlePaddle 1.5
- CUDA 9.0
- CUDNN 7.4
- NCCL 2.1.2

## Common settings

12
- All models below were trained on `coco_2017_train`, and tested on `coco_2017_val`.
J
jerrywgz 已提交
13 14 15 16 17 18 19 20 21 22 23 24 25 26
- Batch Normalization layers in backbones are replaced by Affine Channel layers.
- Unless otherwise noted, all ResNet backbones adopt the [ResNet-B](https://arxiv.org/pdf/1812.01187) variant..
- For RCNN and RetinaNet models, only horizontal flipping data augmentation was used in the training phase and no augmentations were used in the testing phase.

## Training Schedules

- We adopt exactly the same training schedules as [Detectron](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#training-schedules).
- 1x indicates the schedule starts at a LR of 0.02 and is decreased by a factor of 10 after 60k and 80k iterations and eventually terminates at 90k iterations for minibatch size 16. For batch size 8, LR is decreased to 0.01, total training iterations are doubled, and the decay milestones are scaled by 2.
- 2x schedule is twice as long as 1x, with the LR milestones scaled accordingly.

## ImageNet Pretrained Models

The backbone models pretrained on ImageNet are available. All backbone models are pretrained on standard ImageNet-1k dataset and can be downloaded [here](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/image_classification#supported-models-and-performances).

27
- **Notes:**  The ResNet50 model was trained with cosine LR decay schedule and can be downloaded [here](https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar).
J
jerrywgz 已提交
28 29 30 31 32

## Baselines

### Faster & Mask R-CNN

J
jerrywgz 已提交
33
| Backbone             | Type           | Image/gpu | Lr schd | Box AP | Mask AP |                           Download                           |
J
jerrywgz 已提交
34 35 36 37
| :------------------- | :------------- | :-----: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50             | Faster         |    1    |   1x    |  35.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_1x.tar) |
| ResNet50             | Faster         |    1    |   2x    |  37.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar) |
| ResNet50             | Mask           |    1    |   1x    |  36.5  |  32.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_1x.tar) |
G
Guanghua Yu 已提交
38
| ResNet50             | Mask           |    1    |   2x    |  38.2  |  33.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_2x.tar) |
J
jerrywgz 已提交
39
| ResNet50-vd          | Faster         |    1    |   1x    |  36.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_1x.tar) |
J
jerrywgz 已提交
40 41
| ResNet50-FPN         | Faster         |    2    |   1x    |  37.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN         | Faster         |    2    |   2x    |  37.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_fpn_2x.tar) |
42 43
| ResNet50-FPN         | Mask           |    1    |   1x    |  37.9  |  34.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_1x.tar) |
| ResNet50-FPN         | Mask           |    1    |   2x    |  38.7  |  34.7   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_fpn_2x.tar) |
J
jerrywgz 已提交
44
| ResNet50-FPN         | Cascade Faster |    2    |   1x    |  40.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_r50_fpn_1x.tar) |
J
jerrywgz 已提交
45
| ResNet50-vd-FPN      | Faster         |    2    |   2x    |  38.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_vd_fpn_2x.tar) |
46
| ResNet50-vd-FPN      | Mask           |    1    |   2x    |  39.8  |  35.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r50_vd_fpn_2x.tar) |
J
jerrywgz 已提交
47 48 49 50
| ResNet101            | Faster         |    1    |   1x    |  38.3  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_1x.tar) |
| ResNet101-FPN        | Faster         |    1    |   1x    |  38.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_1x.tar) |
| ResNet101-FPN        | Faster         |    1    |   2x    |  39.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_fpn_2x.tar) |
| ResNet101-FPN        | Mask           |    1    |   1x    |  39.5  |  35.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_fpn_1x.tar) |
G
Guanghua Yu 已提交
51
| ResNet101-vd-FPN     | Faster         |    1    |   1x    |  40.5  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_1x.tar) |
52
| ResNet101-vd-FPN     | Faster         |    1    |   2x    |  40.8  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r101_vd_fpn_2x.tar) |
W
wangguanzhong 已提交
53
| ResNet101-vd-FPN     | Mask           |    1    |   1x    |  41.4  |  36.8   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_r101_vd_fpn_1x.tar) |
G
Guanghua Yu 已提交
54
| ResNeXt101-vd-FPN    | Faster         |    1    |   1x    |  42.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_1x.tar) |
55
| ResNeXt101-vd-FPN    | Faster         |    1    |   2x    |  41.7  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_x101_vd_64x4d_fpn_2x.tar) |
W
wangguanzhong 已提交
56 57
| ResNeXt101-vd-FPN    | Mask           |    1    |   1x    |  42.9  |  37.9   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Mask           |    1    |   2x    |  42.6  |  37.6   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_x101_vd_64x4d_fpn_2x.tar) |
J
jerrywgz 已提交
58 59
| SENet154-vd-FPN      | Faster         |    1    |  1.44x  |  42.9  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_se154_vd_fpn_s1x.tar) |
| SENet154-vd-FPN      | Mask           |    1    |  1.44x  |  44.0  |  38.7   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_se154_vd_fpn_s1x.tar) |
J
jerrywgz 已提交
60

61 62 63 64 65 66 67 68 69 70 71 72
### Deformable ConvNets v2

| Backbone             | Type           | Conv    | Image/gpu | Lr schd | Box AP | Mask AP |                           Download                           |
| :------------------- | :------------- | :-----: |:--------: | :-----: | :----: | :-----: | :----------------------------------------------------------: |
| ResNet50-FPN         | Faster         | c3-c5   |    2      |   1x    |  41.0  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN      | Faster         | c3-c5   |    2      |   2x    |  42.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN     | Faster         | c3-c5   |    2      |   1x    |  44.1  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Faster         | c3-c5   |    1      |   1x    |  45.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
| ResNet50-FPN         | Mask           | c3-c5   |    1      |   1x    |  41.9  |  37.3   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet50-vd-FPN      | Mask           | c3-c5   |    1      |   2x    |  42.9  |  38.0   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r50_vd_fpn_2x.tar) |
| ResNet101-vd-FPN     | Mask           | c3-c5   |    1      |   1x    |  44.6  |  39.2   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Mask           | c3-c5   |    1      |   1x    |  46.2  |  40.4   | [model](https://paddlemodels.bj.bcebos.com/object_detection/mask_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
73 74 75
| ResNet50-FPN         | Cascade Faster | c3-c5   |    2      |   1x    |  44.2  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r50_fpn_1x.tar) |
| ResNet101-vd-FPN     | Cascade Faster | c3-c5   |    2      |   1x    |  46.4  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_r101_vd_fpn_1x.tar) |
| ResNeXt101-vd-FPN    | Cascade Faster | c3-c5   |    2      |   1x    |  47.3  |    -    | [model](https://paddlemodels.bj.bcebos.com/object_detection/cascade_rcnn_dcn_x101_vd_64x4d_fpn_1x.tar) |
76 77 78 79 80 81

#### Notes:
- Deformable ConvNets v2(dcn_v2) reference from [Deformable ConvNets v2](https://arxiv.org/abs/1811.11168).
- `c3-c5` means adding `dcn` in resnet stage 3 to 5.
- Detailed configuration file in [configs/dcn](https://github.com/PaddlePaddle/models/tree/develop/PaddleCV/PaddleDetection/configs/dcn)

J
jerrywgz 已提交
82 83
### Yolo v3

J
jerrywgz 已提交
84
| Backbone     | Size | Image/gpu | Lr schd | Box AP | Download  |
K
Kaipeng Deng 已提交
85
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
J
jerrywgz 已提交
86 87 88 89 90 91 92 93 94 95
| DarkNet53    | 608  |    8    |   270e  |  38.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53    | 416  |    8    |   270e  |  37.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| DarkNet53    | 320  |    8    |   270e  |  34.8  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet.tar) |
| MobileNet-V1 | 608  |    8    |   270e  |  29.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 416  |    8    |   270e  |  29.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| MobileNet-V1 | 320  |    8    |   270e  |  27.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1.tar) |
| ResNet34     | 608  |    8    |   270e  |  36.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34     | 416  |    8    |   270e  |  34.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |
| ResNet34     | 320  |    8    |   270e  |  31.4  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34.tar) |

96 97 98 99 100 101 102 103 104 105 106 107 108 109
### Yolo v3 on Pascal VOC

| Backbone     | Size | Image/gpu | Lr schd | Box AP | Download  |
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
| DarkNet53    | 608  |    8    |   270e  |  83.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53    | 416  |    8    |   270e  |  83.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| DarkNet53    | 320  |    8    |   270e  |  82.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_darknet_voc.tar) |
| MobileNet-V1 | 608  |    8    |   270e  |  76.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 416  |    8    |   270e  |  76.7  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| MobileNet-V1 | 320  |    8    |   270e  |  75.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_mobilenet_v1_voc.tar) |
| ResNet34     | 608  |    8    |   270e  |  82.6  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34     | 416  |    8    |   270e  |  81.9  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |
| ResNet34     | 320  |    8    |   270e  |  80.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/yolov3_r34_voc.tar) |

110
**Notes:** Yolo v3 is trained in 8 GPU with total batch size as 64 and trained 270 epoches. Yolo v3 training data augmentations: mixup,
111 112 113
randomly color distortion, randomly cropping, randomly expansion, randomly interpolation method, randomly flippling. Yolo v3 used randomly
reshaped minibatch in training, inferences can be performed on different image sizes with the same model weights, and we provided evaluation
results of image size 608/416/320 above.
J
jerrywgz 已提交
114 115 116

### RetinaNet

117 118 119 120 121
| Backbone          | Image/gpu | Lr schd | Box AP | Download  |
| :---------------: | :-----: | :-----: | :----: | :-------: |
| ResNet50-FPN      |    2    |   1x    |  36.0  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r50_fpn_1x.tar)  |
| ResNet101-FPN     |    2    |   1x    |  37.3  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_r101_fpn_1x.tar) |
| ResNeXt101-vd-FPN |    1    |   1x    |  40.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/retinanet_x101_vd_64x4d_fpn_1x.tar) |
J
jerrywgz 已提交
122 123

**Notes:** In RetinaNet, the base LR is changed to 0.01 for minibatch size 16.
J
jerrywgz 已提交
124

125 126 127
### SSD

| Backbone     | Size | Image/gpu | Lr schd | Box AP | Download  |
128
| :----------: | :--: | :-------: | :-----: | :----: | :-------: |
129 130 131 132 133
| VGG16        | 300  |     8   |   40w  |  25.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300.tar) |
| VGG16        | 512  |     8   |   40w  |  29.1  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512.tar) |

**Notes:** VGG-SSD is trained in 4 GPU with total batch size as 32 and trained 400000 iters.

Q
qingqing01 已提交
134
### SSD on Pascal VOC
J
jerrywgz 已提交
135

J
jerrywgz 已提交
136
| Backbone     | Size | Image/gpu | Lr schd | Box AP | Download  |
K
Kaipeng Deng 已提交
137
| :----------- | :--: | :-----: | :-----: | :----: | :-------: |
138 139 140
| MobileNet v1 | 300  |    32   |   120e  |  73.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobilenet_v1_voc.tar) |
| VGG16        | 300  |     8   |   240e  |  77.5  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_300_voc.tar) |
| VGG16        | 512  |     8   |   240e  |  80.2  | [model](https://paddlemodels.bj.bcebos.com/object_detection/ssd_vgg16_512_voc.tar) |
K
Kaipeng Deng 已提交
141

142
**NOTE**: MobileNet-SSD is trained in 2 GPU with totoal batch size as 64 and trained 120 epoches. VGG-SSD is trained in 4 GPU with total batch size as 32 and trained 240 epoches. SSD training data augmentations: randomly color distortion,
J
jerrywgz 已提交
143
randomly cropping, randomly expansion, randomly flipping.