pybind.cc 11.7 KB
Newer Older
1 2 3 4 5 6
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

7
http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Q
Qiao Longfei 已提交
19
#include "paddle/framework/backward.h"
D
dangqingqing 已提交
20
#include "paddle/framework/lod_tensor.h"
Y
Yu Yang 已提交
21
#include "paddle/framework/op_registry.h"
Y
Yan Chunwei 已提交
22
#include "paddle/operators/net_op.h"
Y
Yan Chunwei 已提交
23
#include "paddle/operators/recurrent_op.h"
Q
qijun 已提交
24
#include "paddle/platform/enforce.h"
Q
qijun 已提交
25
#include "paddle/platform/place.h"
26
#include "paddle/pybind/tensor_py.h"
27
#include "paddle/string/to_string.h"
Y
Yu Yang 已提交
28 29 30 31
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

32 33
namespace py = pybind11;

34
USE_OP(add);
35
USE_OP(onehot_cross_entropy);
F
fengjiayi 已提交
36
USE_OP(sgd);
Q
qijun 已提交
37
USE_OP(mul);
38
USE_OP(elementwise_mul);
L
liaogang 已提交
39
USE_OP(mean);
Q
qijun 已提交
40 41 42
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
F
fengjiayi 已提交
43
USE_OP(fill_zeros_like);
44
USE_NO_KERNEL_OP(recurrent);
45
USE_OP(gaussian_random);
Y
Yu Yang 已提交
46
USE_OP(uniform_random);
47
USE_OP(lookup_table);
Y
Yu Yang 已提交
48
USE_OP(scale);
49
USE_NO_KERNEL_OP(identity);
Y
Yu Yang 已提交
50
USE_OP(minus);
X
Xinghai Sun 已提交
51
USE_OP(cos_sim);
Z
zchen0211 已提交
52
USE_CPU_ONLY_OP(gather);
W
wanghaoshuang 已提交
53
USE_OP(pad);
Z
zchen0211 已提交
54
USE_CPU_ONLY_OP(scatter);
55
USE_CPU_ONLY_OP(concat);
武毅 已提交
56
USE_OP(top_k);
57
USE_OP(squared_l2_distance);
58
USE_OP(sum);
Y
Yibing Liu 已提交
59
USE_OP(reshape);
60

61 62
namespace paddle {
namespace framework {
D
dongzhihong 已提交
63 64

using Tensor = framework::Tensor;
65 66
using LoDTensor = framework::LoDTensor;
using LoD = framework::LoD;
D
dongzhihong 已提交
67

68 69 70 71 72
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

Q
qijun 已提交
73 74 75 76 77 78 79 80
bool IsCompileGPU() {
#ifdef PADDLE_ONLY_CPU
  return false;
#else
  return true;
#endif
}

81
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
82
  py::module m("core", "C++ core of PaddlePaddle");
83

84 85 86
  py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
Y
Yu Yang 已提交
87
      .def("get_dims",
88
           [](const Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
89
      .def("set_dims",
Q
qijun 已提交
90
           [](Tensor &self, const std::vector<int64_t> &dim) {
91
             self.Resize(make_ddim(dim));
Y
Yu Yang 已提交
92 93
           })
      .def("alloc_float",
Y
Yu Yang 已提交
94
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
95
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
96
           })
Q
qijun 已提交
97
      .def("alloc_float",
Y
Yu Yang 已提交
98
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
99
             self.mutable_data<float>(place);
Y
Yu Yang 已提交
100 101
           })
      .def("alloc_int",
Y
Yu Yang 已提交
102
           [](Tensor &self, paddle::platform::CPUPlace &place) {
Q
qijun 已提交
103
             self.mutable_data<int>(place);
Y
Yu Yang 已提交
104
           })
Q
qijun 已提交
105
      .def("alloc_int",
Y
Yu Yang 已提交
106
           [](Tensor &self, paddle::platform::GPUPlace &place) {
Q
qijun 已提交
107
             self.mutable_data<int>(place);
Q
qijun 已提交
108
           })
Y
Yu Yang 已提交
109 110
      .def("set", PyCPUTensorSetFromArray<float>)
      .def("set", PyCPUTensorSetFromArray<int>)
Q
qijun 已提交
111
#ifndef PADDLE_ONLY_CPU
Y
Yu Yang 已提交
112 113
      .def("set", PyCUDATensorSetFromArray<float>)
      .def("set", PyCUDATensorSetFromArray<int>)
Q
qijun 已提交
114
#endif
115
      .def("shape", [](Tensor &self) { return vectorize(self.dims()); })
Y
Yu Yang 已提交
116
      .def("set_float_element",
117
           [](Tensor &self, size_t offset, float f) {
Y
Yu Yang 已提交
118
             // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
119 120
             self.data<float>()[offset] = f;
           })
121
      .def("get_float_element", [](Tensor &self, size_t offset) -> float {
Y
Yu Yang 已提交
122
        // TODO(yuyang18): Only support GPU now.
Y
Yu Yang 已提交
123 124
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
125

126
  py::class_<LoDTensor, Tensor>(m, "LoDTensor")
127 128
      .def_buffer(
          [](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
129 130 131
      .def(
          "__init__",
          [](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
132
#ifdef PADDLE_ONLY_CPU
133
            new (&instance) LoDTensor(lod);
134 135 136 137
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
138
             new (&instance) LoDTensor(new_lod);
139
#endif
140
          })
D
dangqingqing 已提交
141
      .def("set_lod",
142
           [](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
143
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
144
             self.set_lod(lod);
145 146 147 148 149 150
#else
             paddle::framework::LoD new_lod;
             new_lod.reserve(lod.size());
             std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
             self.set_lod(new_lod);
#endif
D
dangqingqing 已提交
151
           })
152 153
      .def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
#ifdef PADDLE_ONLY_CPU
D
dangqingqing 已提交
154
        return self.lod();
155 156 157 158 159 160 161 162 163 164 165 166 167 168
#else
           auto lod = self.lod();
           std::vector<std::vector<size_t>> new_lod;
           new_lod.reserve(lod.size());
           std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
               [](paddle::framework::Vector<size_t> item) ->
                   std::vector<size_t> {
                 std::vector<size_t> v;
                 v.reserve(item.size());
                 std::copy(item.begin(), item.end(), std::back_inserter(v));
                 return v;
               });
           return new_lod;
#endif
D
dangqingqing 已提交
169 170
      });

171
  py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
172 173 174

All parameter, weight, gradient are variables in Paddle.
)DOC")
175
      .def("is_int", [](const Variable &var) { return var.IsType<int>(); })
176
      .def("set_int",
177 178
           [](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
      .def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
179 180 181 182
      //      .def("get_tensor",
      //         [](Variable &self) -> Tensor * { return
      //         self.GetMutable<Tensor>(); },
      //         py::return_value_policy::reference)
Y
Yu Yang 已提交
183
      .def("get_tensor",
184 185
           [](Variable &self) -> LoDTensor * {
             return self.GetMutable<LoDTensor>();
D
dangqingqing 已提交
186 187
           },
           py::return_value_policy::reference)
Y
Yan Chunwei 已提交
188
      .def("get_net",
D
dongzhihong 已提交
189 190
           [](Variable &self) -> operators::NetOp * {
             return self.GetMutable<operators::NetOp>();
Y
Yan Chunwei 已提交
191
           },
Y
Yu Yang 已提交
192
           py::return_value_policy::reference);
193

194
  py::class_<Scope>(m, "Scope", "")
Y
Yu Yang 已提交
195
      .def("new_var",
196
           [](Scope &self, const std::string &name) -> Variable * {
Y
Yu Yang 已提交
197 198
             return self.NewVar(name);
           },
199
           py::return_value_policy::reference)
200
      .def("find_var", &Scope::FindVar, py::return_value_policy::reference)
Y
Yu Yang 已提交
201
      .def(py::init<>())
202 203
      .def("new_scope",
           [](Scope &self) -> Scope * { return &self.NewScope(); },
204
           py::return_value_policy::reference)
205
      .def("drop_kids", &Scope::DropKids);
206

Y
Yu Yang 已提交
207 208
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
209 210
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
211 212 213 214

    OpInfoMap::Instance().IterAllInfo([&ret_values](const std::string &type,
                                                    const OpInfo &info) {
      if (!info.HasOpProtoAndChecker()) return;
Y
Yu Yang 已提交
215
      std::string str;
Y
Yu Yang 已提交
216
      PADDLE_ENFORCE(info.Proto().SerializeToString(&str),
Y
Yu Yang 已提交
217
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
218 219
      ret_values.emplace_back(str);
    });
Y
Yu Yang 已提交
220 221
    return ret_values;
  });
222 223 224
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
Y
Yi Wang 已提交
225 226
      .def("empty", []() { return kEmptyVarName; })
      .def("temp", []() { return kTempVarName; });
Q
qijun 已提交
227
  // clang-format off
Y
Yu Yang 已提交
228
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
Q
qijun 已提交
229 230
      .def_static("create",
                  [](paddle::platform::CPUPlace& place)
Q
qijun 已提交
231
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
232 233 234 235 236
                    return new paddle::platform::CPUDeviceContext();
                  })
      .def_static("create",
                  [](paddle::platform::GPUPlace& place)
                      -> paddle::platform::DeviceContext* {
Q
qijun 已提交
237
#ifdef PADDLE_ONLY_CPU
Q
qijun 已提交
238
                    PADDLE_THROW("GPUPlace is not supported in CPU device.");
Q
qijun 已提交
239
#else
Q
qijun 已提交
240
                    return new paddle::platform::CUDADeviceContext(place);
Q
qijun 已提交
241
#endif
Q
qijun 已提交
242
                  });
Q
qijun 已提交
243
  // clang-format on
Q
qijun 已提交
244

245 246 247
  py::class_<platform::GPUPlace>(m, "GPUPlace")
      .def(py::init<int>())
      .def("__str__", string::to_string<const platform::GPUPlace &>);
Q
qijun 已提交
248

249 250 251
  py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
      .def(py::init<>())
      .def("__str__", string::to_string<const platform::CPUPlace &>);
Y
Yu Yang 已提交
252

Y
Yu Yang 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
  py::class_<OperatorBase>(m, "Operator")
      .def_static("create",
                  [](py::bytes protobin) {
                    OpDesc desc;
                    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                                   "Cannot parse user input to OpDesc");
                    PADDLE_ENFORCE(desc.IsInitialized(),
                                   "User OpDesc is not initialized, reason %s",
                                   desc.InitializationErrorString());
                    return OpRegistry::CreateOp(desc);
                  })
      .def("backward",
           [](const OperatorBase &forwardOp,
              const std::unordered_set<std::string> &no_grad_vars) {
             return Backward(forwardOp, no_grad_vars).release();
           })
      .def("infer_shape", &OperatorBase::InferShape)
      .def("run", &OperatorBase::Run)
      .def("type",
           [](const OperatorBase &op) -> std::string { return op.Type(); })
      .def("outputs",
           [](const OperatorBase &op)
               -> std::map<std::string, std::vector<std::string>> {
                 return op.Outputs();
               })
Q
qijun 已提交
278 279
      .def("output_vars",
           [](const OperatorBase &op) { return op.OutputVars(true); })
Y
Yu Yang 已提交
280
      .def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
Q
qijun 已提交
281
      .def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
Y
Yu Yang 已提交
282 283 284 285
      .def("__str__", &OperatorBase::DebugString)
      .def("no_intermediate_outputs",
           [](const OperatorBase &op) { return op.OutputVars(false); })
      .def("support_gpu", &OperatorBase::SupportGPU);
Y
Yu Yang 已提交
286

Y
Yu Yang 已提交
287 288 289 290 291 292 293
  py::class_<operators::NetOp, OperatorBase>(m, "Net")
      .def_static("create",
                  []() -> operators::NetOp * {
                    auto *retv = new operators::NetOp;
                    retv->SetType("plain_net");
                    return retv;
                  })
294 295 296 297
      .def("append_op",
           [](operators::NetOp &self, const OperatorBase &op) {
             self.AppendOp(op);
           })
D
dongzhihong 已提交
298 299 300 301
      .def("complete_add_op", &operators::NetOp::CompleteAddOp)
      .def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
        self->CompleteAddOp();
      });
Y
Yan Chunwei 已提交
302

Y
Yan Chunwei 已提交
303
  // recurrent_op
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311 312 313 314 315 316
  py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
      .def_static(
          "create",
          [](py::bytes protobin) -> operators::RecurrentOp * {
            OpDesc desc;
            PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                           "Cannot parse user input to OpDesc");
            PADDLE_ENFORCE(desc.IsInitialized(),
                           "User OpDesc is not initialized, reason %s",
                           desc.InitializationErrorString());
            auto rnn_op = OpRegistry::CreateOp(desc);
            return static_cast<operators::RecurrentOp *>(rnn_op.release());
          })
317 318 319
      .def("set_stepnet",
           [](operators::RecurrentOp &self, const operators::NetOp &net)
               -> void { self.set_stepnet(net.Clone()); });
Y
Yan Chunwei 已提交
320

321 322
  m.def("unique_integer", UniqueIntegerGenerator);

Q
qijun 已提交
323 324
  m.def("is_compile_gpu", IsCompileGPU);

325
  return m.ptr();
L
Luo Tao 已提交
326
}
327 328
}  // namespace framework
}  // namespace paddle