ValidationLayer.cpp 5.1 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <algorithm>
#include <fstream>
Y
Yu Yang 已提交
17
#include <memory>
Z
zhangjinchao01 已提交
18 19

#include "ValidationLayer.h"
Y
Yu Yang 已提交
20
#include "paddle/utils/Logging.h"
Z
zhangjinchao01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

namespace paddle {

bool ValidationLayer::init(const LayerMap& layerMap,
                           const ParameterMap& parameterMap) {
  return Layer::init(layerMap, parameterMap);
}

void ValidationLayer::forward(PassType passType) {
  Layer::forward(passType);

  MatrixPtr output = getInputValue(*getOutputLayer());
  CHECK(output);
  IVectorPtr label = getInputLabel(*getLabelLayer());
  CHECK(label);
  validationImp(output, label);
}

void ValidationLayer::backward(const UpdateCallback& callback) {
  (void)callback;
}

bool AucValidation::init(const LayerMap& layerMap,
                         const ParameterMap& parameterMap) {
  bool ret = ValidationLayer::init(layerMap, parameterMap);
  EvaluatorConfig config;
  config.set_name(getName());
  config.set_type("last-column-auc");
  config.add_input_layers(inputLayers_[0]->getName());
  config.add_input_layers(inputLayers_[1]->getName());
  if (3 == inputLayers_.size()) {
    config.add_input_layers(inputLayers_[2]->getName());
  }
  evaluator_.reset(Evaluator::create(config));
  passBegin_ = false;
  return ret;
}

void AucValidation::validationImp(MatrixPtr output, IVectorPtr label) {
  if (!passBegin_) {
    passBegin_ = true;
    evaluator_->start();
  }

  bool supportWeight = (3 == inputLayers_.size()) ? true : false;
  MatrixPtr weight = supportWeight ? getInputValue(*inputLayers_[2]) : nullptr;
  if (dynamic_cast<GpuMatrix*>(output.get())) {
    size_t height = output->getHeight();
    size_t width = output->getWidth();
70 71 72 73 74
    Matrix::resizeOrCreate(cpuOutput_,
                           height,
                           width,
                           /* trans=*/false,
                           /* useGpu=*/false);
Z
zhangjinchao01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
    cpuOutput_->copyFrom(*output);
    IVector::resizeOrCreate(cpuLabel_, height, false);
    cpuLabel_->copyFrom(*label);

    if (supportWeight) {
      Matrix::resizeOrCreate(cpuWeight_, height, (size_t)1, false, false);
      cpuWeight_->copyFrom(*weight);
    }

    output = cpuOutput_;
    label = cpuLabel_;
    weight = cpuWeight_;
  }

  for (size_t i = 0; i < output->getHeight(); i++) {
    float y1 = output->getData()[i * output->getWidth() + 1];
    int* labels = label->getData();
    predictArray_.push_back(PredictionResult(y1, labels[i]));
  }
  std::vector<Argument> arguments;
  if (3 == inputLayers_.size()) {
    arguments.resize(3);
    arguments[2].value = weight;
  } else {
    arguments.resize(2);
  }
  arguments[0].value = output;
  arguments[1].ids = label;
  evaluator_->evalImp(arguments);
}

void AucValidation::onPassEnd() {
  if (!FLAGS_predict_file.empty()) {
    std::ofstream fs(FLAGS_predict_file);
    CHECK(fs) << "Fail to open " << FLAGS_predict_file;
    for (auto& res : predictArray_) {
      fs << res.out << " " << res.label << std::endl;
    }
  }

  evaluator_->finish();
  LOG(INFO) << *evaluator_;
  passBegin_ = false;
  predictArray_.clear();
}

bool PnpairValidation::init(const LayerMap& layerMap,
                            const ParameterMap& parameterMap) {
  bool ret = ValidationLayer::init(layerMap, parameterMap);
  if (!ret) return ret;
  CHECK_GE(inputLayers_.size(), 3UL);
  CHECK_LE(inputLayers_.size(), 4UL);
  EvaluatorConfig config;
  config.set_name(getName());
  config.set_type("pnpair");
  config.add_input_layers(inputLayers_[0]->getName());
  config.add_input_layers(inputLayers_[1]->getName());
  config.add_input_layers(inputLayers_[2]->getName());
  if (4 == inputLayers_.size()) {
    config.add_input_layers(inputLayers_[3]->getName());
  }
  evaluator_.reset(Evaluator::create(config));
  passBegin_ = false;
  return true;
}

void PnpairValidation::validationImp(MatrixPtr output, IVectorPtr label) {
  if (!passBegin_) {
    passBegin_ = true;
    evaluator_->start();
  }
  MatrixPtr weight =
      (4 == inputLayers_.size()) ? getInputValue(*inputLayers_[3]) : nullptr;
  IVectorPtr info = getInputLabel(*getInfoLayer());
  std::vector<Argument> arguments;
  if (4 == inputLayers_.size()) {
    arguments.resize(4);
    arguments[3].value = weight;
  } else {
    arguments.resize(3);
  }
  arguments[0].value = output;
  arguments[1].ids = label;
  arguments[2].ids = info;
  evaluator_->evalImp(arguments);
}

void PnpairValidation::onPassEnd() {
  if (!FLAGS_predict_file.empty()) {
    (dynamic_cast<PnpairEvaluator*>(evaluator_.get()))->printPredictResults();
  }
  evaluator_->finish();
  LOG(INFO) << *evaluator_;
  passBegin_ = false;
}

}  // namespace paddle