seq_expand_op.cc 4.8 KB
Newer Older
W
wanghaoshuang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#include "paddle/operators/seq_expand_op.h"

namespace paddle {
namespace operators {

using framework::Tensor;

class SeqExpandOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
28 29
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasOutput("Out"));
W
wanghaoshuang 已提交
30
    PADDLE_ENFORCE(ctx->HasInput("Y"));
W
wanghaoshuang 已提交
31 32 33
    framework::DDim out_dim;
    out_dim = ctx->GetInputDim("Y");
    ctx->ShareLoD("Y", "Out");
W
wanghaoshuang 已提交
34 35 36 37 38 39 40 41 42
    ctx->SetOutputDim("Out", out_dim);
  }
};

class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  SeqExpandOpMaker(framework::OpProto* proto,
                   framework::OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
W
wanghaoshuang 已提交
43
    AddInput("X",
W
wanghaoshuang 已提交
44
             "(Tensor or LoDTensor) The input(X) of this operator can be a "
W
wanghaoshuang 已提交
45 46
             "LoDTensor or a base Tensor.");
    AddInput("Y",
W
wanghaoshuang 已提交
47
             "(LoDTensor)The reference input(Y) of seq_expand op."
W
wanghaoshuang 已提交
48
             "It must be a LoDTensor with k-level(k>0)."
W
wanghaoshuang 已提交
49 50 51
             "The input(X) will be expanded according to LOD of input(Y)."
             "The element numbers of last level in input(Y) "
             "must be equal to dims[0] of input(X).");
W
wanghaoshuang 已提交
52
    AddOutput("Out",
53
              "(LodTensor)The output of seq_expand op."
W
wanghaoshuang 已提交
54
              "The lod of output will be as same as input(Y)'s lod.");
W
wanghaoshuang 已提交
55
    AddComment(R"DOC(
56
Seq Expand Operator.
W
wanghaoshuang 已提交
57

58 59
This operator expands input(X) according to LOD of input(Y).
Following are cases to better explain how this works:
W
wanghaoshuang 已提交
60
Case 1:
W
wanghaoshuang 已提交
61

W
wanghaoshuang 已提交
62 63 64 65 66 67 68 69
Given 2-level a LoDTensor input(X)
    X.lod = [[0,       2, 3],
             [0, 1,    3, 4]]
    X.data = [a, b, c, d]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 7, 8]]
70
with condition len(Y.lod[-1]) -1 == X.dims[0]
W
wanghaoshuang 已提交
71 72 73 74 75
then we get 2-level LoDTensor
    Out.lod = [[0,                2,    4],
               [0,       3,       6, 7, 8]]
    Out.data = [a, a, a, b, b, b, c, d]
    Out.dims = [8, 1]
W
wanghaoshuang 已提交
76 77 78

Case 2:

W
wanghaoshuang 已提交
79 80 81 82 83 84
Given a 0-level LoDTensor input(X)
    X.data = [a, b, c]
    X.lod = NULL
    X.dims = [3, 1]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
85
with condition len(Y.lod[-1]) -1 == X.dims[0]
W
wanghaoshuang 已提交
86 87 88 89
then we get 1-level LoDTensor
    Out.lod = [[0,    2, 3,      6]]
    Out.data = [a, a, b, c, c, c]
    Out.dims = [6, 1]
W
wanghaoshuang 已提交
90 91 92

Case 3:

W
wanghaoshuang 已提交
93 94
Given a 0-level LoDTensor input(X)
    X.data = [[a, b], [c, d], [e, f]]
W
wanghaoshuang 已提交
95
    X.lod = NULL
W
wanghaoshuang 已提交
96 97 98
    X.dims = [3, 2]
and input(Y)
    Y.lod = [[0, 2, 3, 6]]
99
with condition len(Y.lod[-1]) -1 == X.dims[0]
W
wanghaoshuang 已提交
100
then we get 1-level LoDTensor
W
wanghaoshuang 已提交
101 102 103 104
    Out.lod = [[0,           2,     3,                     6]]
    Out.data = [[a,b], [a,b] [c,d], [e, f], [e, f], [e, f]]
    Out.dims = [6, 2]

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
Case 4:

Given 2-level a LoDTensor input(X)
    X.lod = [[0,       2, 3],
             [0, 1,    3, 4]]
    X.data = [a, b, c, d]
    X.dims = [4, 1]
and input(Y)
    Y.lod = [[0,    2,    4],
             [0, 3, 6, 6, 8]]
with condition len(Y.lod[-1]) -1 == X.dims[0]
then we get 2-level LoDTensor
    Out.lod = [[0,                2,    4],
               [0,       3,       6, 6, 8]]
    Out.data = [a, a, a, b, b, b, d, d]
    Out.dims = [8, 1]

W
wanghaoshuang 已提交
122 123 124 125 126 127 128 129 130 131 132

)DOC");
  }
};

class SeqExpandOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  void InferShape(framework::InferShapeContext* ctx) const override {
133 134
    PADDLE_ENFORCE(ctx->HasInput("X"));
    PADDLE_ENFORCE(ctx->HasInput("Out"));
W
wanghaoshuang 已提交
135
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
W
wanghaoshuang 已提交
136
                   "The input(Out@GRAD) should not be null");
W
wanghaoshuang 已提交
137 138 139 140 141 142 143 144 145 146 147 148
    auto x_dims = ctx->GetInputDim("X");
    auto x_grad_name = framework::GradVarName("X");
    if (ctx->HasOutput(x_grad_name)) {
      ctx->SetOutputDim(x_grad_name, x_dims);
    }
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
W
wanghaoshuang 已提交
149 150
REGISTER_OP(seq_expand, ops::SeqExpandOp, ops::SeqExpandOpMaker,
            seq_expand_grad, ops::SeqExpandOpGrad);
W
wanghaoshuang 已提交
151 152 153 154 155
REGISTER_OP_CPU_KERNEL(seq_expand,
                       ops::SeqExpandKernel<paddle::platform::CPUPlace, float>);
REGISTER_OP_CPU_KERNEL(
    seq_expand_grad,
    ops::SeqExpandGradKernel<paddle::platform::CPUPlace, float>);