pipe_utils.py 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import time
import os
import ast
import glob
import yaml
import copy
import numpy as np

from python.keypoint_preprocess import EvalAffine, TopDownEvalAffine, expand_crop


class Times(object):
    def __init__(self):
        self.time = 0.
        # start time
        self.st = 0.
        # end time
        self.et = 0.

    def start(self):
        self.st = time.time()

    def end(self, repeats=1, accumulative=True):
        self.et = time.time()
        if accumulative:
            self.time += (self.et - self.st) / repeats
        else:
            self.time = (self.et - self.st) / repeats

    def reset(self):
        self.time = 0.
        self.st = 0.
        self.et = 0.

    def value(self):
        return round(self.time, 4)


class PipeTimer(Times):
    def __init__(self):
        super(PipeTimer, self).__init__()
        self.total_time = Times()
        self.module_time = {
            'det': Times(),
            'mot': Times(),
            'attr': Times(),
            'kpt': Times(),
62
            'video_action': Times(),
Z
zhiboniu 已提交
63
            'skeleton_action': Times(),
J
JYChen 已提交
64 65
            'reid': Times(),
            'det_action': Times(),
66
            'cls_action': Times(),
Z
zhiboniu 已提交
67 68
            'vehicle_attr': Times(),
            'vehicleplate': Times()
69 70
        }
        self.img_num = 0
Z
zhiboniu 已提交
71
        self.track_num = 0
72

73
    def get_total_time(self):
74 75
        total_time = self.total_time.value()
        total_time = round(total_time, 4)
76 77 78 79 80 81 82 83
        average_latency = total_time / max(1, self.img_num)
        qps = 0
        if total_time > 0:
            qps = 1 / average_latency
        return total_time, average_latency, qps

    def info(self):
        total_time, average_latency, qps = self.get_total_time()
84 85 86 87 88 89
        print("------------------ Inference Time Info ----------------------")
        print("total_time(ms): {}, img_num: {}".format(total_time * 1000,
                                                       self.img_num))

        for k, v in self.module_time.items():
            v_time = round(v.value(), 4)
Z
zhiboniu 已提交
90
            if v_time > 0 and k in ['det', 'mot', 'video_action']:
91
                print("{} time(ms): {}".format(k, v_time * 1000))
Z
zhiboniu 已提交
92 93 94
            elif v_time > 0:
                print("{} time(ms): {}; per trackid average time(ms): {}".
                      format(k, v_time * 1000, v_time * 1000 / self.track_num))
95 96 97

        print("average latency time(ms): {:.2f}, QPS: {:2f}".format(
            average_latency * 1000, qps))
98
        return qps
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115

    def report(self, average=False):
        dic = {}
        dic['total'] = round(self.total_time.value() / max(1, self.img_num),
                             4) if average else self.total_time.value()
        dic['det'] = round(self.module_time['det'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['det'].value()
        dic['mot'] = round(self.module_time['mot'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['mot'].value()
        dic['attr'] = round(self.module_time['attr'].value() /
                            max(1, self.img_num),
                            4) if average else self.module_time['attr'].value()
        dic['kpt'] = round(self.module_time['kpt'].value() /
                           max(1, self.img_num),
                           4) if average else self.module_time['kpt'].value()
116
        dic['video_action'] = self.module_time['video_action'].value()
Z
zhiboniu 已提交
117 118 119
        dic['skeleton_action'] = round(
            self.module_time['skeleton_action'].value() / max(1, self.img_num),
            4) if average else self.module_time['skeleton_action'].value()
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

        dic['img_num'] = self.img_num
        return dic


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        return [infer_img]

    images = set()
    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.update(glob.glob('{}/*.{}'.format(infer_dir, ext)))
    images = list(images)

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    print("Found {} inference images in total.".format(len(images)))

    return images


Z
zhiboniu 已提交
156
def crop_image_with_det(batch_input, det_res, thresh=0.3):
157 158 159 160 161 162 163
    boxes = det_res['boxes']
    score = det_res['boxes'][:, 1]
    boxes_num = det_res['boxes_num']
    start_idx = 0
    crop_res = []
    for b_id, input in enumerate(batch_input):
        boxes_num_i = boxes_num[b_id]
164 165
        if boxes_num_i == 0:
            continue
166 167 168
        boxes_i = boxes[start_idx:start_idx + boxes_num_i, :]
        score_i = score[start_idx:start_idx + boxes_num_i]
        res = []
Z
zhiboniu 已提交
169 170 171 172 173
        for box, s in zip(boxes_i, score_i):
            if s > thresh:
                crop_image, new_box, ori_box = expand_crop(input, box)
                if crop_image is not None:
                    res.append(crop_image)
174 175 176 177
        crop_res.append(res)
    return crop_res


Z
zhiboniu 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191
def normal_crop(image, rect):
    imgh, imgw, c = image.shape
    label, conf, xmin, ymin, xmax, ymax = [int(x) for x in rect.tolist()]
    org_rect = [xmin, ymin, xmax, ymax]
    if label != 0:
        return None, None, None
    xmin = max(0, xmin)
    ymin = max(0, ymin)
    xmax = min(imgw, xmax)
    ymax = min(imgh, ymax)
    return image[ymin:ymax, xmin:xmax, :], [xmin, ymin, xmax, ymax], org_rect


def crop_image_with_mot(input, mot_res, expand=True):
192 193
    res = mot_res['boxes']
    crop_res = []
J
JYChen 已提交
194 195
    new_bboxes = []
    ori_bboxes = []
196
    for box in res:
Z
zhiboniu 已提交
197 198 199 200
        if expand:
            crop_image, new_bbox, ori_bbox = expand_crop(input, box[1:])
        else:
            crop_image, new_bbox, ori_bbox = normal_crop(input, box[1:])
201 202
        if crop_image is not None:
            crop_res.append(crop_image)
J
JYChen 已提交
203 204 205
            new_bboxes.append(new_bbox)
            ori_bboxes.append(ori_bbox)
    return crop_res, new_bboxes, ori_bboxes
206 207 208 209 210 211 212 213 214 215


def parse_mot_res(input):
    mot_res = []
    boxes, scores, ids = input[0]
    for box, score, i in zip(boxes[0], scores[0], ids[0]):
        xmin, ymin, w, h = box
        res = [i, 0, score, xmin, ymin, xmin + w, ymin + h]
        mot_res.append(res)
    return {'boxes': np.array(mot_res)}
J
JYChen 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245


def refine_keypoint_coordinary(kpts, bbox, coord_size):
    """
        This function is used to adjust coordinate values to a fixed scale.
    """
    tl = bbox[:, 0:2]
    wh = bbox[:, 2:] - tl
    tl = np.expand_dims(np.transpose(tl, (1, 0)), (2, 3))
    wh = np.expand_dims(np.transpose(wh, (1, 0)), (2, 3))
    target_w, target_h = coord_size
    res = (kpts - tl) / wh * np.expand_dims(
        np.array([[target_w], [target_h]]), (2, 3))
    return res


def parse_mot_keypoint(input, coord_size):
    parsed_skeleton_with_mot = {}
    ids = []
    skeleton = []
    for tracker_id, kpt_seq in input:
        ids.append(tracker_id)
        kpts = np.array(kpt_seq.kpts, dtype=np.float32)[:, :, :2]
        kpts = np.expand_dims(np.transpose(kpts, [2, 0, 1]),
                              -1)  #T, K, C -> C, T, K, 1
        bbox = np.array(kpt_seq.bboxes, dtype=np.float32)
        skeleton.append(refine_keypoint_coordinary(kpts, bbox, coord_size))
    parsed_skeleton_with_mot["mot_id"] = ids
    parsed_skeleton_with_mot["skeleton"] = skeleton
    return parsed_skeleton_with_mot