fc_mkldnn_op.cc 15.2 KB
Newer Older
M
mozga-intel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/fc_mkldnn_op.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/mkldnn_helper.h"

namespace paddle {
namespace operators {

using paddle::framework::Tensor;
using paddle::platform::MKLDNNDeviceContext;

void FCOp::InferShape(framework::InferShapeContext* ctx) const {
  PADDLE_ENFORCE(ctx->HasInput("Input"),
                 "X(Input) of Fully Connected should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Fully Connected should not be null.");
  PADDLE_ENFORCE(ctx->HasInput("W"),
                 "W(Input) of Fully Connected should not be null.");

  auto in_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("W");
  std::vector<int64_t> output_shape({in_dims[0], w_dims[1]});

  PADDLE_ENFORCE(in_dims.size() == 4,
                 "Fully Connected input should be 4-D tensor.");

  PADDLE_ENFORCE(w_dims.size() == 2,
                 "Fully Connected input should be 2-D tensor.");

  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
  ctx->ShareLoD("Input", "Out");
}

framework::OpKernelType FCOp::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  framework::LibraryType library{framework::LibraryType::kMKLDNN};

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout, library);
}

void FCOpGrad::InferShape(framework::InferShapeContext* ctx) const {
  auto in_dims = ctx->GetInputDim("Input");
  auto w_dims = ctx->GetInputDim("W");

  if (ctx->HasOutput(framework::GradVarName("Input"))) {
    ctx->SetOutputDim(framework::GradVarName("Input"), in_dims);
  }
  if (ctx->HasOutput(framework::GradVarName("W"))) {
    ctx->SetOutputDim(framework::GradVarName("W"), w_dims);
  }
}

framework::OpKernelType FCOpGrad::GetExpectedKernelType(
    const framework::ExecutionContext& ctx) const {
  framework::LibraryType library{framework::LibraryType::kMKLDNN};

  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout = framework::StringToDataLayout(data_format);

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("Input")->type()), ctx.GetPlace(),
      layout, library);
}

class FCOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  FCOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput(
        "Input",
        "(Tensor) The input tensor of fully connected operator. "
        "The format of input tensor is NCHW, where N is batch size, C is the "
        "number of channels, H is the height of the feature, "
        "and W is the width of the feature.");
    AddInput("W", "(Tensor), The second input tensor of fc op.");
    AddOutput("Out",
              "(Tensor) The output tensor of pooling operator. "
              "The format of output tensor is also NCHW, "
              "where N is batch size, C is the number of channels, "
              "H is the height of the feature, "
              "and W is the width of the feature.");
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<bool>("with_bias",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
    AddComment(R"DOC(
)DOC");
  }
};

struct MKLDNNMatrixSize final {
  explicit MKLDNNMatrixSize(const std::vector<int>& in,
                            const std::vector<int>& w)
      : mb{in[0]}, ic{in[1]}, oc{w[1]}, h{in[2]}, w{in[3]} {}

  bool is_spatial() const { return h > 1 && w > 1; }

  const int mb;
  const int ic;
  const int oc;
  const int h, w;
};

template <typename T>
class MKLDNNMD {
 public:
  explicit MKLDNNMD(const T* in, const T* w, bool bias)
      : sz_(std::unique_ptr<MKLDNNMatrixSize>(new MKLDNNMatrixSize(
            paddle::framework::vectorize2int(in->dims()),
            paddle::framework::vectorize2int(w->dims())))) {
    with_bias_ = bias;
  }

  mkldnn::memory::desc dst() const {
    return platform::MKLDNNMemDesc({sz_->mb, sz_->oc},
                                   mkldnn::memory::data_type::f32,
                                   mkldnn::memory::format::nc);
  }

  mkldnn::memory::desc src() const {
    return sz_->is_spatial()
               ? platform::MKLDNNMemDesc({sz_->mb, sz_->ic, sz_->h, sz_->w},
                                         mkldnn::memory::data_type::f32,
                                         mkldnn::memory::format::nchw)
               : platform::MKLDNNMemDesc({sz_->mb, sz_->ic},
                                         mkldnn::memory::data_type::f32,
                                         mkldnn::memory::format::nc);
  }

  mkldnn::memory::desc weights() const {
    return sz_->is_spatial()
               ? platform::MKLDNNMemDesc({sz_->oc, sz_->ic, sz_->h, sz_->w},
                                         mkldnn::memory::data_type::f32,
                                         mkldnn::memory::format::oihw)
               : platform::MKLDNNMemDesc({sz_->oc, sz_->ic},
                                         mkldnn::memory::data_type::f32,
                                         mkldnn::memory::format::oi);
  }

  mkldnn::memory::desc bias() const {
    return with_bias_
               ? platform::MKLDNNMemDesc({sz_->oc},
                                         mkldnn::memory::data_type::f32,
                                         mkldnn::memory::format::format_undef)
               : platform::MKLDNNMemDesc({}, mkldnn::memory::data_type::f32,
                                         mkldnn::memory::format::format_undef);
  }

 private:
  std::unique_ptr<MKLDNNMatrixSize> sz_;
  bool with_bias_;
};

class MKLDNNMemory {
 public:
  MKLDNNMemory(MKLDNNMD<Tensor>* t, const mkldnn::engine& e)
      : md_{t}, engine_{e} {}
  virtual ~MKLDNNMemory() = default;

  template <typename Output>
  mkldnn::memory dst(const Output* out) {
    return mkldnn::memory({md_->dst(), engine_},
                          static_cast<void*>(const_cast<float*>(out)));
  }

  template <typename Output>
  mkldnn::memory dst(Output* out) {
    return mkldnn::memory({md_->dst(), engine_}, out);
  }

  template <typename Input>
  mkldnn::memory src(const Input* in) {
    return mkldnn::memory({md_->src(), engine_},
                          static_cast<void*>(const_cast<float*>(in)));
  }

  template <typename Weight>
  mkldnn::memory weights(const Weight* w) {
    return mkldnn::memory({md_->weights(), engine_},
                          static_cast<void*>(const_cast<float*>(w)));
  }

  mkldnn::memory bias() {
    return mkldnn::memory(mkldnn::memory::primitive_desc(md_->bias(), engine_));
  }

 private:
  MKLDNNMD<Tensor>* md_;
  const mkldnn::engine& engine_;
};

template <typename T>
class FCMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    auto input = ctx.Input<Tensor>("Input");
    auto w = ctx.Input<Tensor>("W");

    PADDLE_ENFORCE(input->dims().size() == 4,
                   "Input must be with 4 dimensions, i.e. NCHW");
    PADDLE_ENFORCE(w->dims().size() == 2,
                   "Weights must be with 2 dimensions, i.e. NC");

    bool with_bias = ctx.Attr<bool>("with_bias");
    MKLDNNMD<Tensor> md(input, w, with_bias);

    std::shared_ptr<mkldnn::inner_product_forward::primitive_desc> pd =
        FcFwdPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(),
                           with_bias, mkldnn_engine);

    const std::string key = ctx.op().Output("Out");
    const std::string key_fc_pd = key + "@fc_pd";

    dev_ctx.SetBlob(key_fc_pd, pd);

    MKLDNNMemory mem(&md, mkldnn_engine);

    const T* input_data = input->data<T>();
    const T* w_data = w->data<T>();

    auto output = ctx.Output<Tensor>("Out");
    T* output_data = output->mutable_data<T>(ctx.GetPlace());

    auto dst_memory = mem.dst(output_data);
    auto src_memory = mem.src(input_data);
    auto weights_memory = mem.weights(w_data);
    auto bias_memory = mem.bias();

    auto forward = with_bias ? mkldnn::inner_product_forward(
                                   *pd, src_memory, weights_memory, bias_memory,
                                   dst_memory)
                             : mkldnn::inner_product_forward(
                                   *pd, src_memory, weights_memory, dst_memory);

    std::vector<mkldnn::primitive> pipeline = {forward};
    mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
  }

 private:
  std::unique_ptr<mkldnn::inner_product_forward::primitive_desc>
  FcFwdPrimitiveDesc(const mkldnn::memory::desc& src,
                     const mkldnn::memory::desc& weights,
                     const mkldnn::memory::desc& dst,
                     const mkldnn::memory::desc& bias, const bool with_bias,
                     const mkldnn::engine& engine) const {
    auto desc = with_bias
                    ? mkldnn::inner_product_forward::desc(
                          mkldnn::prop_kind::forward, src, weights, bias, dst)
                    : mkldnn::inner_product_forward::desc(
                          mkldnn::prop_kind::forward, src, weights, dst);

    auto pd = new mkldnn::inner_product_forward::primitive_desc(desc, engine);
    return std::unique_ptr<mkldnn::inner_product_forward::primitive_desc>(pd);
  }
};

template <typename T>
class FCMKLDNNGradOpKernel : public paddle::framework::OpKernel<T> {
 public:
  void Compute(const paddle::framework::ExecutionContext& ctx) const override {
    PADDLE_ENFORCE(paddle::platform::is_cpu_place(ctx.GetPlace()),
                   "It must use CPUPlace.");

    auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
    const auto& mkldnn_engine = dev_ctx.GetEngine();

    T* input_grad_data = nullptr;
    T* w_grad_data = nullptr;

    Tensor* input_grad = ctx.Output<Tensor>(framework::GradVarName("Input"));
    Tensor* w_grad = ctx.Output<Tensor>(framework::GradVarName("W"));

    if (input_grad) {
      input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
    }
    if (w_grad) {
      w_grad_data = w_grad->mutable_data<T>(ctx.GetPlace());
    }

    const Tensor* input = ctx.Input<Tensor>("Input");
    const T* input_data = input->data<T>();

    const Tensor* w = ctx.Input<Tensor>("W");
    const T* w_data = w->data<T>();

    const Tensor* out_grad = ctx.Input<Tensor>(framework::GradVarName("Out"));
    const T* out_grad_data = out_grad->data<T>();

    bool with_bias = ctx.Attr<bool>("with_bias");

    MKLDNNMD<Tensor> md(input, w, with_bias);
    MKLDNNMemory mem(&md, mkldnn_engine);

    auto dst_memory = mem.dst(out_grad_data);
    auto src_memory = mem.src(input_data);
    auto weights_memory = mem.weights(w_data);
    auto bias_memory = mem.bias();

    const std::string key = ctx.op().Input("Out");
    const std::string key_fc_pd = key + "@fc_pd";

    auto pd =
        std::static_pointer_cast<mkldnn::inner_product_forward::primitive_desc>(
            dev_ctx.GetBlob(key_fc_pd));

    PADDLE_ENFORCE(pd != nullptr, "Fail to find key_fc_pd in device context");

    if (w_grad) {
      auto weights_grad_memory = mem.weights(w_grad_data);

      mkldnn::inner_product_backward_weights::primitive_desc bwd_weight_pd =
          FcBwdWeightsPrimitiveDesc(md.src(), md.weights(), md.dst(), md.bias(),
                                    with_bias, *pd, mkldnn_engine);

      auto bwd_weights_prim = mkldnn::inner_product_backward_weights(
          bwd_weight_pd, src_memory, dst_memory, weights_grad_memory,
          bias_memory);

      std::vector<mkldnn::primitive> pipeline{bwd_weights_prim};
      mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
    }

    if (input_grad) {
      auto src_grad_memory = mem.src(input_grad_data);

      mkldnn::inner_product_backward_data::primitive_desc bwd_data_pd =
          FcBwdDataPrimitiveDesc(md.src(), md.weights(), md.dst(), *pd,
                                 mkldnn_engine);

      auto bwd_data_prim = mkldnn::inner_product_backward_data(
          bwd_data_pd, dst_memory, weights_memory, src_grad_memory);

      std::vector<mkldnn::primitive> pipeline{bwd_data_prim};
      mkldnn::stream(mkldnn::stream::kind::eager).submit(pipeline).wait();
    }
  }

 private:
  mkldnn::inner_product_backward_weights::primitive_desc
  FcBwdWeightsPrimitiveDesc(
      const mkldnn::memory::desc& src, const mkldnn::memory::desc& diff_weights,
      const mkldnn::memory::desc& diff_dst, const mkldnn::memory::desc& bias,
      const bool with_bias,
      const mkldnn::inner_product_forward::primitive_desc& pd,
      const mkldnn::engine& engine) const {
    auto bwd_weight_desc = with_bias
                               ? mkldnn::inner_product_backward_weights::desc(
                                     src, diff_weights, bias, diff_dst)
                               : mkldnn::inner_product_backward_weights::desc(
                                     src, diff_weights, bias, diff_dst);

    return mkldnn::inner_product_backward_weights::primitive_desc(
        bwd_weight_desc, engine, pd);
  }

  mkldnn::inner_product_backward_data::primitive_desc FcBwdDataPrimitiveDesc(
      const mkldnn::memory::desc& diff_src, const mkldnn::memory::desc& weights,
      const mkldnn::memory::desc& diff_dst,
      const mkldnn::inner_product_forward::primitive_desc& pd,
      const mkldnn::engine& engine) const {
    auto bwd_data_desc =
        mkldnn::inner_product_backward_data::desc(diff_src, weights, diff_dst);
    return mkldnn::inner_product_backward_data::primitive_desc(bwd_data_desc,
                                                               engine, pd);
  }
};
}  // namespace operators
}  // namespace paddle

REGISTER_OP(fc, paddle::operators::FCOp, paddle::operators::FCOpMaker, fc_grad,
            paddle::operators::FCOpGrad);

REGISTER_OP_KERNEL(fc, MKLDNN, ::paddle::platform::CPUPlace,
                   paddle::operators::FCMKLDNNOpKernel<float>);

REGISTER_OP_KERNEL(fc_grad, MKLDNN, ::paddle::platform::CPUPlace,
                   paddle::operators::FCMKLDNNGradOpKernel<float>);