multiclass_nms_op.cc 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

constexpr int64_t kOutputDim = 6;
constexpr int64_t kBBoxSize = 4;

class MulticlassNMSOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Bboxes"),
                   "Input(Bboxes) of MulticlassNMS should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Scores"),
                   "Input(Scores) of MulticlassNMS should not be null.");

    auto box_dims = ctx->GetInputDim("Bboxes");
    auto score_dims = ctx->GetInputDim("Scores");

D
dangqingqing 已提交
40
    PADDLE_ENFORCE_EQ(box_dims.size(), 2,
41 42 43 44
                      "The rank of Input(Bboxes) must be 3.");
    PADDLE_ENFORCE_EQ(score_dims.size(), 3,
                      "The rank of Input(Scores) must be 3.");
    PADDLE_ENFORCE_EQ(box_dims[2], 4);
D
dangqingqing 已提交
45
    PADDLE_ENFORCE_EQ(box_dims[0], score_dims[2]);
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309

    // Here the box_dims[0] is not the real dimension of output.
    // It will be rewritten in the computing kernel.
    ctx->SetOutputDim("Out", {box_dims[0], 6});
  }
};

template <class T>
bool SortScorePairDescend(const std::pair<float, T>& pair1,
                          const std::pair<float, T>& pair2) {
  return pair1.first > pair2.first;
}

template <class T>
static inline void GetMaxScoreIndex(
    const std::vector<T>& scores, const T threshold, int top_k,
    std::vector<std::pair<T, int>>* sorted_indices) {
  for (size_t i = 0; i < scores.size(); ++i) {
    if (scores[i] > threshold) {
      sorted_indices->push_back(std::make_pair(scores[i], i));
    }
  }
  // Sort the score pair according to the scores in descending order
  std::stable_sort(sorted_indices->begin(), sorted_indices->end(),
                   SortScorePairDescend<int>);
  // Keep top_k scores if needed.
  if (top_k > -1 && top_k < sorted_indices->size()) {
    sorted_indices->resize(top_k);
  }
}

template <class T>
T BBoxArea(const T* box, const bool normalized) {
  if (box[2] < box[0] || box[3] < box[1]) {
    // If bbox is invalid (e.g. xmax < xmin or ymax < ymin), return 0.
    return T(0.);
  } else {
    const T w = box[2] - box[0];
    const T h = box[3] - box[1];
    if (normalized) {
      return w * h;
    } else {
      // If bbox is not within range [0, 1].
      return (w + 1) * (h + 1);
    }
  }
}

template <class T>
static inline T JaccardOverlap(const T* box1, const T* box2,
                               const bool normalized) {
  if (box2[0] > box1[2] || box2[2] < box1[0] || box2[1] > box1[3] ||
      box2[3] < box1[1]) {
    return static_cast<T>(0.);
  } else {
    const T inter_xmin = std::max(box1[0], box2[0]);
    const T inter_ymin = std::max(box1[1], box2[1]);
    const T inter_xmax = std::min(box1[2], box2[2]);
    const T inter_ymax = std::min(box1[3], box2[3]);
    const T inter_w = inter_xmax - inter_xmin;
    const T inter_h = inter_ymax - inter_ymin;
    const T inter_area = inter_w * inter_h;
    const T bbox1_area = BBoxArea<T>(box1, normalized);
    const T bbox2_area = BBoxArea<T>(box2, normalized);
    return inter_area / (bbox1_area + bbox2_area - inter_area);
  }
}

template <typename T>
class MulticlassNMSKernel : public framework::OpKernel<T> {
 public:
  void NMSFast(const Tensor& bbox, const Tensor& scores,
               const T score_threshold, const T nms_threshold, const T eta,
               const int64_t top_k, std::vector<int>* selected_indices) const {
    // The total boxes for each instance.
    int64_t num_boxes = bbox.dims()[0];
    // 4: [xmin ymin xmax ymax]
    int64_t box_size = bbox.dims()[1];

    std::vector<T> scores_data(num_boxes);
    std::copy_n(scores.data<T>(), num_boxes, scores_data.begin());
    std::vector<std::pair<T, int>> sorted_indices;
    GetMaxScoreIndex(scores_data, score_threshold, top_k, &sorted_indices);

    selected_indices->clear();
    T adaptive_threshold = nms_threshold;
    const T* bbox_data = bbox.data<T>();

    while (sorted_indices.size() != 0) {
      const int idx = sorted_indices.front().second;
      bool keep = true;
      for (int k = 0; k < selected_indices->size(); ++k) {
        if (keep) {
          const int kept_idx = (*selected_indices)[k];
          T overlap = JaccardOverlap<T>(bbox_data + idx * box_size,
                                        bbox_data + kept_idx * box_size, true);
          keep = overlap <= adaptive_threshold;
        } else {
          break;
        }
      }
      if (keep) {
        selected_indices->push_back(idx);
      }
      sorted_indices.erase(sorted_indices.begin());
      if (keep && eta < 1 && adaptive_threshold > 0.5) {
        adaptive_threshold *= eta;
      }
    }
  }

  void MulticlassNMS(const framework::ExecutionContext& ctx,
                     const Tensor& scores, const Tensor& bboxes,
                     std::map<int, std::vector<int>>* indices,
                     int* num_nmsed_out) const {
    int64_t background_label = ctx.Attr<int64_t>("background_label");
    int64_t nms_top_k = ctx.Attr<int64_t>("nms_top_k");
    int64_t keep_top_k = ctx.Attr<int64_t>("keep_top_k");
    T nms_threshold = static_cast<T>(ctx.Attr<float>("nms_threshold"));
    T nms_eta = static_cast<T>(ctx.Attr<float>("nms_eta"));
    T score_threshold = static_cast<T>(ctx.Attr<float>("confidence_threshold"));

    int64_t class_num = scores.dims()[0];
    int64_t predict_dim = scores.dims()[1];
    int num_det = 0;
    for (int64_t c = 0; c < class_num; ++c) {
      if (c == background_label) continue;
      Tensor score = scores.Slice(c, c + 1);
      NMSFast(bboxes, score, score_threshold, nms_threshold, nms_eta, nms_top_k,
              &((*indices)[c]));
      num_det += indices[c].size();
    }

    *num_nmsed_out = num_det;
    const T* scores_data = scores.data<T>();
    if (keep_top_k > -1 && num_det > keep_top_k) {
      std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
      for (const auto& it : *indices) {
        int label = it.first;
        const T* sdata = scores_data + label * predict_dim;
        const std::vector<int>& label_indices = it.second;
        for (int j = 0; j < label_indices.size(); ++j) {
          int idx = label_indices[j];
          PADDLE_ENFORCE_LT(idx, predict_dim);
          score_index_pairs.push_back(
              std::make_pair(sdata[idx], std::make_pair(label, idx)));
        }
      }
      // Keep top k results per image.
      std::sort(score_index_pairs.begin(), score_index_pairs.end(),
                SortScorePairDescend<std::pair<int, int>>);
      score_index_pairs.resize(keep_top_k);

      // Store the new indices.
      std::map<int, std::vector<int>> new_indices;
      for (int j = 0; j < score_index_pairs.size(); ++j) {
        int label = score_index_pairs[j].second.first;
        int idx = score_index_pairs[j].second.second;
        new_indices[label].push_back(idx);
      }
      new_indices.swap(*indices);
      *num_nmsed_out = keep_top_k;
    }
  }

  void MulticlassOutput(const Tensor& scores, const Tensor& bboxes,
                        std::map<int, std::vector<int>>& selected_indices,
                        Tensor* outs) const {
    int predict_dim = scores.dims()[1];
    auto* scores_data = scores.data<T>();
    auto* bboxes_data = bboxes.data<T>();
    auto* odata = outs->data<T>();

    int count = 0;
    for (const auto& it : selected_indices) {
      int label = it.first;
      const T* sdata = scores_data + label * predict_dim;
      std::vector<int> indices = it.second;
      for (int j = 0; j < indices.size(); ++j) {
        int idx = indices[j];
        const T* bdata = bboxes_data + idx * kBBoxSize;
        odata[count * kOutputDim] = label;           // label
        odata[count * kOutputDim + 1] = sdata[idx];  // score
        odata[count * kOutputDim + 2] = bdata[0];    // xmin
        odata[count * kOutputDim + 3] = bdata[1];    // ymin
        odata[count * kOutputDim + 4] = bdata[2];    // xmax
        odata[count * kOutputDim + 5] = bdata[3];    // ymax
      }
      count++;
    }
  }

  void Compute(const framework::ExecutionContext& ctx) const override {
    auto* boxes = ctx.Input<Tensor>("Bboxes");
    auto* scores = ctx.Input<Tensor>("Scores");
    auto* outs = ctx.Output<LoDTensor>("Out");

    auto box_dims = boxes->dims();
    auto score_dims = scores->dims();

    int64_t batch_size = box_dims[0];
    int64_t class_num = score_dims[1];
    int64_t predict_dim = score_dims[2];

    std::vector<std::map<int, std::vector<int>>> all_indices;
    std::vector<size_t> batch_starts = {0};
    for (int64_t i = 0; i < batch_size; ++i) {
      Tensor ins_score = scores->Slice(i, i + 1);
      ins_score.Resize({class_num, predict_dim});
      std::map<int, std::vector<int>> indices;
      int num_nmsed_out = 0;
      MulticlassNMS(ctx, ins_score, *boxes, &indices, &num_nmsed_out);
      all_indices.push_back(indices);
      batch_starts.push_back(batch_starts.back() + num_nmsed_out);
    }

    int num_kept = batch_starts.back();
    if (num_kept == 0) {
      outs->Resize({0, 0});
    } else {
      outs->mutable_data<T>({num_kept, kOutputDim}, ctx.GetPlace());
      for (int64_t i = 0; i < batch_size; ++i) {
        Tensor ins_score = scores->Slice(i, i + 1);
        ins_score.Resize({class_num, predict_dim});
        int64_t s = batch_starts[i];
        int64_t e = batch_starts[i + 1];
        if (e > s) {
          Tensor out = outs->Slice(s, e);
          MulticlassOutput(ins_score, *boxes, all_indices[i], &out);
        }
      }
    }

    framework::LoD lod;
    lod.emplace_back(batch_starts);

    outs->set_lod(lod);
  }
};

class MulticlassNMSOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  MulticlassNMSOpMaker(OpProto* proto, OpAttrChecker* op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("Bboxes",
             "(Tensor) A 2-D Tensor with shape [M, 4] represents the location "
             "predictions with M bboxes. 4 is the number of "
             "each location coordinates.");
    AddOutput("Scores",
              "(Tensor) A 3-D Tensor with shape [N, C, M] represents the "
              "confidence predictions. N is the batch size, C is the class "
              "number, M is number of predictions for each class, which is "
              "the same with Bboxes.");
    AddAttr<int64_t>(
        "background_label",
        "(int64_t, defalut: 0) "
        "The index of background label, the background label will be ignored.")
        .SetDefault(0);
    AddAttr<float>("nms_threshold",
                   "(float, defalut: 0.3) "
                   "The threshold to be used in nms.")
        .SetDefault(0.3);
    AddAttr<int64_t>("nms_top_k",
                     "(int64_t) "
D
dangqingqing 已提交
310
                     "Maximum number of results to be kept.");
311 312 313 314 315 316
    AddAttr<float>("nms_eta",
                   "(float) "
                   "The parameter for adaptive nms.")
        .SetDefault(1.0);
    AddAttr<int64_t>("keep_top_k",
                     "(int64_t) "
D
dangqingqing 已提交
317 318
                     "Number of total bboxes to be kept per image after nms "
                     "step. -1 means keeping all bboxes after nms step.");
319 320
    AddAttr<float>("confidence_threshold",
                   "(float) "
D
dangqingqing 已提交
321 322
                   "Only consider detections whose confidences are larger than "
                   "a threshold. If not provided, consider all boxes.");
323 324 325 326 327 328 329 330 331
    AddOutput("Out",
              "(LoDTensor) A 2-D LoDTensor with shape [No, 6] represents the "
              "detections. Each row has 6 values: "
              "[label, confidence, xmin, ymin, xmax, ymax], No is the total "
              "number of detections in this mini-batch. For each instance, "
              "the offsets in first dimension are called LoD, the number of "
              "offset is N + 1, if LoD[i + 1] - LoD[i] == 0, means there is "
              "no detected bbox.");
    AddComment(R"DOC(
D
dangqingqing 已提交
332
This operators is to do multi-class non maximum suppression (NMS) on a batched
333 334 335 336 337
of boxes and scores.

This op greedily selects a subset of detection bounding boxes, pruning
away boxes that have high IOU (intersection over union) overlap (> thresh)
with already selected boxes.  It operates independently for each class for
D
dangqingqing 已提交
338 339
which scores are provided, pruning boxes with score less than a provided
threshold prior to applying NMS.
340 341 342 343 344 345 346 347 348 349 350 351 352 353

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(multiclass_nms, ops::MulticlassNMSOp,
                  ops::MulticlassNMSOpMaker,
                  paddle::framework::EmptyGradOpMaker);
REGISTER_OP_CPU_KERNEL(multiclass_nms, ops::MulticlassNMSKernel<float>,
                       ops::MulticlassNMSKernel<double>);