README_en.md 4.6 KB
Newer Older
W
wangxinxin08 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
English | [简体中文](README.md)

# Rotated Object Detection

## Table of Contents
- [Introduction](#Introduction)
- [Model Zoo](#Model-Zoo)
- [Data Preparation](#Data-Preparation)
- [Installation](#Installation)

## Introduction
Rotated object detection is used to detect rectangular bounding boxes with angle information, that is, the long and short sides of the rectangular bounding box are no longer parallel to the image coordinate axes. Oriented bounding boxes generally contain less background information than horizontal bounding boxes. Rotated object detection is often used in remote sensing scenarios.

## Model Zoo
| Model | mAP | Lr Scheduler | Angle | Aug | GPU Number | images/GPU | download | config |
|:---:|:----:|:---------:|:-----:|:--------:|:-----:|:------------:|:-------:|:------:|
17
| [S2ANet](./s2anet/README_en.md) | 73.84 | 2x | le135 | - | 4 | 2 | [model](https://paddledet.bj.bcebos.com/models/s2anet_alignconv_2x_dota.pdparams) | [config](https://github.com/PaddlePaddle/PaddleDetection/tree/develop/configs/rotate/s2anet/s2anet_alignconv_2x_dota.yml) |
W
wangxinxin08 已提交
18 19 20 21

**Notes:**

- if **GPU number** or **mini-batch size** is changed, **learning rate** should be adjusted according to the formula **lr<sub>new</sub> = lr<sub>default</sub> * (batch_size<sub>new</sub> * GPU_number<sub>new</sub>) / (batch_size<sub>default</sub> * GPU_number<sub>default</sub>)**.
22
- Models in model zoo is trained and tested with single scale by default. If `MS` is indicated in the data augmentation column, it means that multi-scale training and multi-scale testing are used. If `RR` is indicated in the data augmentation column, it means that RandomRotate data augmentation is used for training.
W
wangxinxin08 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

## Data Preparation
### DOTA Dataset preparation
The DOTA dataset is a large-scale remote sensing image dataset containing annotations of oriented and horizontal bounding boxes. The dataset can be download from [Official Website of DOTA Dataset](https://captain-whu.github.io/DOTA/). When the dataset is decompressed, its directory structure is shown as follows.
```
${DOTA_ROOT}
├── test
│   └── images
├── train
│   ├── images
│   └── labelTxt
└── val
    ├── images
    └── labelTxt
```

39 40 41 42
For labeled data, each image corresponds to a txt file with the same name, and each row in the txt file represent a rotated bouding box. The format is as follows:

```
x1 y1 x2 y2 x3 y3 x4 y4 class_name difficult
W
wangxinxin08 已提交
43
```
44 45 46 47 48

### Slicing data with single scale
The image resolution of DOTA dataset is relatively high, so we usually slice the images before training and testing. To slice the images with a single scale, you can use the command below
``` bash
# slicing labeled data
W
wangxinxin08 已提交
49 50 51 52 53 54 55
python configs/rotate/tools/prepare_data.py \
    --input_dirs ${DOTA_ROOT}/train/ ${DOTA_ROOT}/val/ \
    --output_dir ${OUTPUT_DIR}/trainval1024/ \
    --coco_json_file DOTA_trainval1024.json \
    --subsize 1024 \
    --gap 200 \
    --rates 1.0
56 57 58 59 60 61 62 63 64 65
# slicing unlabeled data by setting --image_only
python configs/rotate/tools/prepare_data.py \
    --input_dirs ${DOTA_ROOT}/test/ \
    --output_dir ${OUTPUT_DIR}/test1024/ \
    --coco_json_file DOTA_test1024.json \
    --subsize 1024 \
    --gap 200 \
    --rates 1.0 \
    --image_only

W
wangxinxin08 已提交
66
```
67 68

### Slicing data with multi scale
W
wangxinxin08 已提交
69
To slice the images with multiple scales, you can use the command below
70 71
``` bash
# slicing labeled data
W
wangxinxin08 已提交
72 73 74 75 76 77
python configs/rotate/tools/prepare_data.py \
    --input_dirs ${DOTA_ROOT}/train/ ${DOTA_ROOT}/val/ \
    --output_dir ${OUTPUT_DIR}/trainval/ \
    --coco_json_file DOTA_trainval1024.json \
    --subsize 1024 \
    --gap 500 \
78 79
    --rates 0.5 1.0 1.5
# slicing unlabeled data by setting --image_only
W
wangxinxin08 已提交
80 81 82 83 84
python configs/rotate/tools/prepare_data.py \
    --input_dirs ${DOTA_ROOT}/test/ \
    --output_dir ${OUTPUT_DIR}/test1024/ \
    --coco_json_file DOTA_test1024.json \
    --subsize 1024 \
85 86
    --gap 500 \
    --rates 0.5 1.0 1.5 \
W
wangxinxin08 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
    --image_only
```

## Installation
Models of rotated object detection depend on external operators for training, evaluation, etc. In Linux environment, you can execute the following command to compile and install.
```
cd ppdet/ext_op
python setup.py install
```
In Windows environment, perform the following steps to install it:

(1)Visual Studio (version required >= Visual Studio 2015 Update3);

(2)Go to Start --> Visual Studio 2017 --> X64 native Tools command prompt for VS 2017;

(3)Setting Environment Variables:set DISTUTILS_USE_SDK=1

(4)Enter `ppdet/ext_op` directory,use `python setup.py install` to install。

After the installation, you can execute the unittest of `ppdet/ext_op/unittest` to verify whether the external oprators is installed correctly.