pool_op.cc 17.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/pool_op.h"
16 17 18 19 20 21
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif
22 23 24 25

namespace paddle {
namespace operators {

26 27 28 29 30 31 32 33 34
int PoolOutputSize(int input_size, int filter_size, int padding, int stride,
                   bool ceil_mode) {
  int output_size;
  if (!ceil_mode) {
    output_size = (input_size - filter_size + 2 * padding) / stride + 1;
  } else {
    output_size =
        (input_size - filter_size + 2 * padding + stride - 1) / stride + 1;
  }
C
chengduoZH 已提交
35 36 37 38 39
  PADDLE_ENFORCE(output_size > 0,
                 "Due to the settings of padding(%d), filter_size(%d) and "
                 "stride(%d), the output size is less than 0, please check "
                 "again. Input_size:%d",
                 padding, filter_size, stride, input_size);
40 41 42
  return output_size;
}

C
chengduo 已提交
43
void PoolOp::InferShape(framework::InferShapeContext* ctx) const {
44 45 46 47 48 49
  PADDLE_ENFORCE(ctx->HasInput("X"), "X(Input) of Pooling should not be null.");
  PADDLE_ENFORCE(ctx->HasOutput("Out"),
                 "Out(Output) of Pooling should not be null.");

  auto in_x_dims = ctx->GetInputDim("X");

C
chengduoZH 已提交
50
  std::string pooling_type = ctx->Attrs().Get<std::string>("pooling_type");
51 52 53
  std::vector<int> ksize = ctx->Attrs().Get<std::vector<int>>("ksize");
  std::vector<int> strides = ctx->Attrs().Get<std::vector<int>>("strides");
  std::vector<int> paddings = ctx->Attrs().Get<std::vector<int>>("paddings");
54
  bool ceil_mode = ctx->Attrs().Get<bool>("ceil_mode");
55
  bool adaptive = ctx->Attrs().Get<bool>("adaptive");
56 57

  PADDLE_ENFORCE(in_x_dims.size() == 4 || in_x_dims.size() == 5,
C
chengduoZH 已提交
58
                 "Pooling intput should be 4-D or 5-D tensor.");
59

C
chengduoZH 已提交
60
  if (ctx->Attrs().Get<bool>("global_pooling")) {
61
    ksize.resize(static_cast<size_t>(in_x_dims.size()) - 2);
C
fix bug  
chengduoZH 已提交
62 63
    for (size_t i = 0; i < ksize.size(); ++i) {
      paddings[i] = 0;
64
      ksize[i] = static_cast<int>(in_x_dims[i + 2]);
C
fix bug  
chengduoZH 已提交
65
    }
66
  }
67 68 69 70 71 72 73 74 75

  PADDLE_ENFORCE(in_x_dims.size() - ksize.size() == 2U,
                 "Input size and pooling size should be consistent.");
  PADDLE_ENFORCE_EQ(ksize.size(), strides.size(),
                    "Strides size and pooling size should be the same.");
  PADDLE_ENFORCE_EQ(ksize.size(), paddings.size(),
                    "Paddings size and pooling size should be the same.");

  std::vector<int64_t> output_shape({in_x_dims[0], in_x_dims[1]});
76 77 78 79 80 81 82
  if (adaptive) {
    output_shape.insert(output_shape.end(), ksize.begin(), ksize.end());
  } else {
    for (size_t i = 0; i < ksize.size(); ++i) {
      output_shape.push_back(PoolOutputSize(
          in_x_dims[i + 2], ksize[i], paddings[i], strides[i], ceil_mode));
    }
83
  }
84
  ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
Y
Yang Yu 已提交
85
  ctx->ShareLoD("X", "Out");
86 87
}

88
framework::OpKernelType PoolOp::GetExpectedKernelType(
C
chengduo 已提交
89
    const framework::ExecutionContext& ctx) const {
90
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
91 92 93
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
94
#ifdef PADDLE_WITH_CUDA
95 96
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
97 98
  }
#endif
99 100 101 102
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
103
    layout_ = framework::DataLayout::kMKLDNN;
104
  }
105
#endif
106 107 108 109 110 111

  return framework::OpKernelType(
      framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
      layout_, library_);
}

C
chengduo 已提交
112
void PoolOpGrad::InferShape(framework::InferShapeContext* ctx) const {
113 114 115 116 117 118
  PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
  PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                 "Input(X@GRAD) should not be null.");
  ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
}

119
framework::OpKernelType PoolOpGrad::GetExpectedKernelType(
C
chengduo 已提交
120
    const framework::ExecutionContext& ctx) const {
121
  framework::LibraryType library_{framework::LibraryType::kPlain};
M
mozga-intel 已提交
122 123 124
  std::string data_format = ctx.Attr<std::string>("data_format");
  framework::DataLayout layout_ = framework::StringToDataLayout(data_format);

C
chengduoZH 已提交
125
#ifdef PADDLE_WITH_CUDA
126 127
  if (platform::CanCUDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kCUDNN;
C
chengduoZH 已提交
128 129
  }
#endif
130 131 132 133
#ifdef PADDLE_WITH_MKLDNN
  if (library_ == framework::LibraryType::kPlain &&
      platform::CanMKLDNNBeUsed(ctx)) {
    library_ = framework::LibraryType::kMKLDNN;
M
mozga-intel 已提交
134
    layout_ = framework::DataLayout::kMKLDNN;
135
  }
136
#endif
137

K
Kexin Zhao 已提交
138 139 140 141 142 143 144
  auto input_data_type = framework::ToDataType(ctx.Input<Tensor>("X")->type());
  if (input_data_type == framework::proto::VarType::FP16) {
    PADDLE_ENFORCE_EQ(library_, framework::LibraryType::kCUDNN,
                      "float16 can only be used when CUDNN is used");
  }
  return framework::OpKernelType(input_data_type, ctx.GetPlace(), layout_,
                                 library_);
145 146
}

Y
Yu Yang 已提交
147
void Pool2dOpMaker::Make() {
148 149
  AddInput(
      "X",
C
chengduoZH 已提交
150
      "(Tensor) The input tensor of pooling operator. "
K
kexinzhao 已提交
151 152 153
      "The format of input tensor is NCHW, where N is batch size, C is the "
      "number of channels, H is the height of the feature, "
      "and W is the width of the feature.");
154
  AddOutput("Out",
K
kexinzhao 已提交
155 156 157 158
            "(Tensor) The output tensor of pooling operator. "
            "The format of output tensor is also NCHW, "
            "where N is batch size, C is the number of channels, "
            "H is the height of the feature, "
159
            "and W is the width of the feature.");
160

C
chengduoZH 已提交
161
  AddAttr<std::string>("pooling_type",
C
chengduoZH 已提交
162 163
                       "(string), pooling type, can be \"max\" for max-pooling "
                       "and \"avg\" for average-pooling.")
164
      .InEnum({"max", "avg"});
C
fix bug  
chengduoZH 已提交
165
  AddAttr<std::vector<int>>("ksize",
K
kexinzhao 已提交
166 167
                            "(vector<int>) The pooling window "
                            "size(height, width) of the pooling operator. "
C
chengduoZH 已提交
168
                            "If global_pooling = true, ksize and paddings will "
C
fix bug  
chengduoZH 已提交
169 170
                            "be ignored.");  // TODO(Chengduo): Add checker.
                                             // (Currently,
C
fix doc  
chengduoZH 已提交
171
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
172
  AddAttr<bool>("global_pooling",
K
kexinzhao 已提交
173
                "(bool, default false) Whether to use the global pooling. "
C
chengduoZH 已提交
174
                "If global_pooling = true, ksize and paddings will be ignored.")
175
      .SetDefault(false);
K
kexinzhao 已提交
176 177 178
  AddAttr<std::vector<int>>("strides",
                            "(vector<int>, default {1, 1}), strides(height, "
                            "width) of pooling operator.")
179 180
      .SetDefault({1, 1});
  // TODO(Chengduo): Add checker. (Currently,
C
fix doc  
chengduoZH 已提交
181 182 183
  // TypedAttrChecker don't support vector type.)
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
184
      "(vector<int>, default {0,0}), paddings(height, width) of pooling "
K
kexinzhao 已提交
185
      "operator."
C
chengduoZH 已提交
186
      "If global_pooling = true, paddings and ksize will be ignored.")
187
      .SetDefault({0, 0});
188 189 190 191 192 193
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
194 195 196 197 198 199 200 201
  AddAttr<bool>(
      "adaptive",
      "(bool, default False) When true, will perform adaptive pooling instead, "
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
      "pooling in each grid area to get output pooling value.")
      .SetDefault(false);

202 203 204 205
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
206 207 208
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
209 210
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
211
      .SetDefault(false);
212 213 214
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
215 216 217 218 219 220 221
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
222 223 224 225 226
  AddAttr<bool>("is_test",
                "(bool, default false) Set to true for inference only, false "
                "for training. Some layers may run faster when this is true.")
      .SetDefault(false);

227
  // TODO(dzhwinter): need to registered layout transform function
228 229

  AddComment(R"DOC(
C
chengduoZH 已提交
230
The pooling2d operation calculates the output based on
C
chengduoZH 已提交
231
the input, pooling_type and ksize, strides, paddings parameters.
K
kexinzhao 已提交
232 233
Input(X) and output(Out) are in NCHW format, where N is batch size, C is the
number of channels, H is the height of the feature, and W is the width of the feature.
C
fix doc  
chengduoZH 已提交
234 235
Parameters(ksize, strides, paddings) are two elements.
These two elements represent height and width, respectively.
C
chengduoZH 已提交
236 237
The input(X) size and output(Out) size may be different.

238
Example:
F
fengjiayi 已提交
239

C
chengduoZH 已提交
240
  Input:
F
fengjiayi 已提交
241

K
kexinzhao 已提交
242
       X shape: $(N, C, H_{in}, W_{in})$
F
fengjiayi 已提交
243

C
chengduoZH 已提交
244
  Output:
F
fengjiayi 已提交
245

K
kexinzhao 已提交
246
       Out shape: $(N, C, H_{out}, W_{out})$
F
fengjiayi 已提交
247

248 249
  For ceil_mode = false:
       $$
F
fengjiayi 已提交
250
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1
F
fengjiayi 已提交
251 252
       $$
       $$
F
fengjiayi 已提交
253
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1
K
kexinzhao 已提交
254
       $$
255 256
  For ceil_mode = true:
       $$
F
fengjiayi 已提交
257
       H_{out} = \\frac{(H_{in} - ksize[0] + 2 * paddings[0] + strides[0] - 1)}{strides[0]} + 1
F
fengjiayi 已提交
258 259
       $$
       $$
F
fengjiayi 已提交
260
       W_{out} = \\frac{(W_{in} - ksize[1] + 2 * paddings[1] + strides[1] - 1)}{strides[1]} + 1
261
       $$
K
kexinzhao 已提交
262

263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
  For exclusive = true:
       $$
       hstart = i * strides[0] - paddings[0]
       hend = hstart + ksize[0]
       wstart = j * strides[1] - paddings[1]
       wend = wstart + ksize[1]
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{ksize[0] * ksize[1]}
       $$
  For exclusive = false:
       $$
       hstart = max(0, i * strides[0] - paddings[0])
       hend = min(H, hstart + ksize[0])
       wstart = max(0, j * strides[1] - paddings[1])
       wend = min(W, wstart + ksize[1])
       Output(i ,j) = \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}
       $$

280
)DOC");
281 282
}

C
chengduo 已提交
283 284 285 286 287 288 289 290
class PoolOpInferVarType : public framework::PassInDtypeAndVarTypeToOutput {
 protected:
  std::unordered_map<std::string, std::string> GetInputOutputWithSameType()
      const override {
    return std::unordered_map<std::string, std::string>{{"X", /*->*/ "Out"}};
  }
};

Y
Yu Yang 已提交
291
void Pool3dOpMaker::Make() {
K
kexinzhao 已提交
292 293 294 295 296 297
  AddInput("X",
           "(Tensor) The input tensor of pooling operator. "
           "The format of input tensor is NCDHW, where N is batch size, C is "
           "the number of channels, and D, H and W is the depth, height and "
           "width of "
           "the feature, respectively.");
298
  AddOutput("Out",
C
chengduoZH 已提交
299
            "(Tensor) The output tensor of pooling operator."
K
kexinzhao 已提交
300 301 302
            "The format of output tensor is also NCDHW, "
            "where N is batch size, C is "
            "the number of channels, and D, H and W is the depth, height and "
303
            "width of the feature, respectively.");
304

C
chengduoZH 已提交
305
  AddAttr<std::string>("pooling_type",
K
kexinzhao 已提交
306
                       "(string) Pooling type, can be \"max\" for max-pooling "
C
chengduoZH 已提交
307
                       "and \"avg\" for average-pooling.")
308
      .InEnum({"max", "avg"});
K
kexinzhao 已提交
309 310 311 312
  AddAttr<std::vector<int>>(
      "ksize",
      "(vector<int>) The pooling window size(depth, height, "
      "width) of pooling operator. "
C
chengduoZH 已提交
313
      "If global_pooling = true, ksize and paddings will "
K
kexinzhao 已提交
314 315
      "be ignored.");  // TODO(Chengduo): Add checker.
                       // (Currently,
C
fix bug  
chengduoZH 已提交
316
  // TypedAttrChecker don't support vector type.)
C
chengduoZH 已提交
317 318 319 320
  AddAttr<bool>(
      "global_pooling",
      "(bool, default false) Whether to use the global pooling. "
      "If global_pooling = true, ksize and paddings wille be ignored.")
321
      .SetDefault(false);
K
kexinzhao 已提交
322 323 324 325
  AddAttr<std::vector<int>>(
      "strides",
      "(vector<int>, default {1,1,1}) Strides(depth, height, "
      "width) of the pooling operator.")
326 327
      .SetDefault({1, 1, 1});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
C
fix bug  
chengduoZH 已提交
328 329
  AddAttr<std::vector<int>>(
      "paddings",
C
chengduoZH 已提交
330
      "(vector<int>, default {0,0,0}), paddings(depth, height, "
K
kexinzhao 已提交
331
      "width) of pooling operator. "
C
chengduoZH 已提交
332
      "If global_pooling = true, ksize and paddings will be ignored.")
333 334
      .SetDefault({0, 0, 0});  // TODO(Chengduo): Add checker. (Currently,
                               // TypedAttrChecker don't support vector type.)
335 336 337 338 339 340
  AddAttr<bool>(
      "exclusive",
      "(bool, default True) When true, will exclude the zero-padding in the "
      "averaging calculating, otherwise, include the zero-padding. Note, it "
      "is only used when pooling_type is avg. The defalut is True.")
      .SetDefault(true);
341 342 343 344 345 346 347
  AddAttr<bool>(
      "adaptive",
      "(bool, default False) When true, will perform adaptive pooling instead, "
      "output shape in H and W dimensions will be same as ksize, input data "
      "will be divided into grids specify by ksize averagely and perform "
      "pooling in each grid area to get output pooling value.")
      .SetDefault(false);
348

349 350 351 352
  AddAttr<bool>(
      "use_cudnn",
      "(bool, default false) Only used in cudnn kernel, need install cudnn")
      .SetDefault(false);
353 354 355
  AddAttr<bool>(
      "ceil_mode",
      "(bool, default false) Wether to use the ceil function to calculate "
W
wanghaoshuang 已提交
356 357
      "output height and width. False is the default. If it is set to False, "
      "the floor function will be used.")
358
      .SetDefault(false);
359 360 361
  AddAttr<bool>("use_mkldnn",
                "(bool, default false) Only used in mkldnn kernel")
      .SetDefault(false);
362 363 364 365 366 367 368 369 370
  AddAttr<std::string>(
      "data_format",
      "(string, default NCHW) Only used in "
      "An optional string from: \"NHWC\", \"NCHW\". "
      "Defaults to \"NHWC\". Specify the data format of the output data, "
      "the input will be transformed automatically. ")
      .SetDefault("AnyLayout");
  // TODO(dzhwinter): need to registered layout transform function

371
  AddComment(R"DOC(
K
kexinzhao 已提交
372 373
Pool3d Operator.

C
chengduoZH 已提交
374
The pooling3d operation calculates the output based on
C
chengduoZH 已提交
375
the input, pooling_type, ksize, strides, and paddings parameters.
K
kexinzhao 已提交
376 377
Input(X) and output(Out) are in NCDHW format, where N is batch
size, C is the number of channels, and D, H and W are the depth, height and
378 379
width of the feature, respectively. Parameters(ksize, strides, paddings)
are three elements. These three elements represent depth, height and
K
kexinzhao 已提交
380
width, respectively. The input(X) size and output(Out) size may be different.
C
chengduoZH 已提交
381 382 383

Example:
  Input:
K
kexinzhao 已提交
384
       X shape: $(N, C, D_{in}, H_{in}, W_{in})$
C
chengduoZH 已提交
385
  Output:
K
kexinzhao 已提交
386
       Out shape: $(N, C, D_{out}, H_{out}, W_{out})$
387
  For ceil_mode = false:
C
chengduoZH 已提交
388 389 390 391 392
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0])}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1])}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2])}{strides[2]} + 1
  $$
393 394 395 396 397 398
  For ceil_mode = true:
  $$
       D_{out} = \frac{(D_{in} - ksize[0] + 2 * paddings[0] + strides[0] -1)}{strides[0]} + 1 \\
       H_{out} = \frac{(H_{in} - ksize[1] + 2 * paddings[1] + strides[1] -1)}{strides[1]} + 1 \\
       W_{out} = \frac{(W_{in} - ksize[2] + 2 * paddings[2] + strides[2] -1)}{strides[2]} + 1
  $$
K
kexinzhao 已提交
399

400
)DOC");
401
}
402 403 404 405 406
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

Y
Yang Yang 已提交
407
REGISTER_OPERATOR(pool2d, ops::PoolOp, ops::Pool2dOpMaker,
C
chengduo 已提交
408
                  ops::PoolOpInferVarType,
409 410
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool2d_grad, ops::PoolOpGrad);
411

Q
QI JUN 已提交
412 413 414 415 416
REGISTER_OP_CPU_KERNEL(
    pool2d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool2d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
417
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);
418

Y
Yang Yang 已提交
419
REGISTER_OPERATOR(pool3d, ops::PoolOp, ops::Pool3dOpMaker,
C
chengduo 已提交
420
                  ops::PoolOpInferVarType,
421 422
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(pool3d_grad, ops::PoolOpGrad);
423

Q
QI JUN 已提交
424 425 426 427 428 429
REGISTER_OP_CPU_KERNEL(
    pool3d, ops::PoolKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    pool3d_grad, ops::PoolGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::PoolGradKernel<paddle::platform::CPUDeviceContext, double>);