sum_op.cc 8.7 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
12
#include "paddle/fluid/operators/sum_op.h"
13

14 15
#include <algorithm>
#include <string>
16
#include <vector>
17

Y
Yi Wang 已提交
18 19
#include "paddle/fluid/framework/var_type_inference.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

25 26 27 28 29 30 31 32
namespace paddle {
namespace operators {
using framework::Tensor;

class SumOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

33
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
qiaolongfei 已提交
34
    PADDLE_ENFORCE(ctx->HasInputs("X"), "Inputs(X) should not be null");
35

Q
Qiao Longfei 已提交
36 37
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SumOp should not be null.");
38 39
    if (ctx->IsRuntime() &&
        ctx->GetOutputsVarType("Out")[0] ==
40
            framework::proto::VarType::LOD_TENSOR_ARRAY) {
41 42
      return;  // skip runtime infershape when is tensor array;
    }
43

44
    auto x_var_types = ctx->GetInputsVarType("X");
45
    auto x_dims = ctx->GetInputsDim("X");
46

Q
Qiao Longfei 已提交
47
    size_t N = x_dims.size();
48 49
    PADDLE_ENFORCE_GT(N, 0, "Input tensors count should > 0.");
    if (N == 1) {
M
minqiyang 已提交
50
      VLOG(3) << "Warning: sum have only one input, may waste memory";
51
    }
Q
qiaolongfei 已提交
52

53
    framework::DDim in_dim({0});
54 55 56 57 58
    for (size_t i = 0; i < x_dims.size(); ++i) {
      if (x_var_types[i] == framework::proto::VarType::SELECTED_ROWS) {
        continue;
      }
      auto& x_dim = x_dims[i];
59 60 61 62 63 64 65 66
      if (framework::product(x_dim) == 0) {
        continue;
      }
      if (framework::product(in_dim) == 0) {
        in_dim = x_dim;
      } else {
        PADDLE_ENFORCE_EQ(in_dim, x_dim, "Input tensors must have same shape");
      }
Q
qijun 已提交
67
    }
Q
Qiao Longfei 已提交
68 69
    ctx->SetOutputDim("Out", in_dim);
    ctx->ShareLoD("X", /*->*/ "Out");
70
  }
71 72

 protected:
73
  framework::OpKernelType GetExpectedKernelType(
74 75
      const framework::ExecutionContext& ctx) const override {
    auto x_vars = ctx.MultiInputVar("X");
C
chengduo 已提交
76
    auto x_vars_name = ctx.Inputs("X");
77 78 79 80 81 82 83 84 85 86 87 88

    framework::LibraryType library{framework::LibraryType::kPlain};
    framework::DataLayout layout{framework::DataLayout::kAnyLayout};

#ifdef PADDLE_WITH_MKLDNN
    if (library == framework::LibraryType::kPlain &&
        platform::CanMKLDNNBeUsed(ctx)) {
      library = framework::LibraryType::kMKLDNN;
      layout = framework::DataLayout::kMKLDNN;
    }
#endif

89
    if (x_vars[0]->IsType<framework::LoDTensor>()) {
90
      int dtype = -1;
C
chengduo 已提交
91 92 93
      for (size_t idx = 0; idx < x_vars.size(); ++idx) {
        PADDLE_ENFORCE(x_vars[idx] != nullptr,
                       "Input var[%s] should not be nullptr", x_vars_name[idx]);
C
chengduo 已提交
94 95
        auto tensor =
            framework::GetLoDTensorOrSelectedRowsValueFromVar(*x_vars[idx]);
96
        if (tensor->numel() == 0) {
97 98 99
          continue;
        }
        if (dtype == -1) {
Y
Yu Yang 已提交
100
          dtype = tensor->type();
101
        } else {
Y
Yu Yang 已提交
102
          PADDLE_ENFORCE_EQ(dtype, tensor->type());
103 104 105 106 107
        }
      }
      PADDLE_ENFORCE_NE(dtype, -1,
                        "Sum operator should have at least one tensor");

108
      return framework::OpKernelType(
109 110
          static_cast<framework::proto::VarType::Type>(dtype), ctx.GetPlace(),
          layout, library);
111
    } else if (x_vars[0]->IsType<framework::SelectedRows>()) {
112 113 114
      for (auto& var : x_vars) {
        auto& value = var->Get<framework::SelectedRows>().value();
        if (value.IsInitialized()) {
Y
Yu Yang 已提交
115 116
          return framework::OpKernelType(value.type(), ctx.device_context(),
                                         layout, library);
117 118 119 120
        }
      }
      // if input sparse vars are not initialized, use an default kernel type.
      return framework::OpKernelType(framework::proto::VarType::FP32,
121
                                     ctx.device_context(), layout, library);
122
    } else if (x_vars[0]->IsType<framework::LoDTensorArray>()) {
Y
Yang Yang(Tony) 已提交
123 124 125 126
      for (auto& x_var : x_vars) {
        auto& array = x_var->Get<framework::LoDTensorArray>();
        for (auto& each : array) {
          if (each.numel() != 0) {
Y
Yu Yang 已提交
127 128
            return framework::OpKernelType(each.type(), ctx.device_context(),
                                           layout, library);
Y
Yang Yang(Tony) 已提交
129
          }
130 131
        }
      }
Y
Yang Yang(Tony) 已提交
132
      PADDLE_THROW("Cannot find the input data type by all input data");
133 134 135 136
    }
    PADDLE_THROW("Unexpected branch. Input type is %s",
                 x_vars[0]->Type().name());
  }
137 138 139 140
};

class SumOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
141
  void Make() override {
142 143
    AddInput("X", "(vector<Tensor>) The input tensors of sum operator.")
        .AsDuplicable();
144
    AddOutput("Out", "(Tensor) The output tensor of sum operator.");
145 146 147
    AddAttr<bool>("use_mkldnn",
                  "(bool, default false) Only used in mkldnn kernel")
        .SetDefault(false);
148
    AddComment(R"DOC(
149
Sum operator.
150

151 152
This operators sums the input tensors. All the inputs can carry the
LoD (Level of Details) information. However, the output only shares
153
the LoD information with the first input.
154
)DOC");
155 156 157
  }
};

Q
QI JUN 已提交
158 159
class SumOpVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
160 161
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
Q
QI JUN 已提交
162
    auto& inputs = op_desc.Input("X");
163
    auto var_type = framework::proto::VarType::SELECTED_ROWS;
Y
Yang Yang(Tony) 已提交
164
    for (auto& name : op_desc.Input("X")) {
M
minqiyang 已提交
165 166
      VLOG(10) << name << " "
               << block->FindRecursiveOrCreateVar(name).GetType();
Y
Yang Yang(Tony) 已提交
167 168
    }

Q
QI JUN 已提交
169 170
    bool any_input_is_lod_tensor = std::any_of(
        inputs.begin(), inputs.end(), [block](const std::string& name) {
Y
Yang Yu 已提交
171
          return block->FindRecursiveOrCreateVar(name).GetType() ==
172
                 framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
173
        });
174 175

    auto is_tensor_array = [block](const std::string& name) {
Y
Yang Yu 已提交
176
      return block->FindRecursiveOrCreateVar(name).GetType() ==
177
             framework::proto::VarType::LOD_TENSOR_ARRAY;
178 179 180 181 182 183 184 185
    };

    bool any_input_is_tensor_array =
        std::any_of(inputs.begin(), inputs.end(), is_tensor_array);
    bool all_inputs_are_tensor_array =
        std::all_of(inputs.begin(), inputs.end(), is_tensor_array);

    if (any_input_is_tensor_array) {
Y
Yang Yang(Tony) 已提交
186 187 188 189
      if (!all_inputs_are_tensor_array) {
        std::ostringstream os;
        for (auto& each : inputs) {
          os << "    " << each << " type is "
Y
Yang Yu 已提交
190
             << block->FindRecursiveOrCreateVar(each).GetType() << "\n";
Y
Yang Yang(Tony) 已提交
191 192 193 194
        }
        PADDLE_ENFORCE(all_inputs_are_tensor_array,
                       "Not all inputs are tensor array:\n%s", os.str());
      }
195
      var_type = framework::proto::VarType::LOD_TENSOR_ARRAY;
196
    } else if (any_input_is_lod_tensor) {
197
      var_type = framework::proto::VarType::LOD_TENSOR;
Q
QI JUN 已提交
198 199 200
    }

    auto out_var_name = op_desc.Output("Out").front();
Y
Yang Yu 已提交
201
    auto& out_var = block->FindRecursiveOrCreateVar(out_var_name);
Y
Yang Yang(Tony) 已提交
202 203 204
    out_var.SetType(var_type);
    auto& in_var = detail::Ref(block->FindVarRecursive(inputs.front()));
    out_var.SetDataType(in_var.GetDataType());
Q
QI JUN 已提交
205 206 207
  }
};

208
class SumGradMaker : public framework::GradOpDescMakerBase {
209
 public:
210
  using framework::GradOpDescMakerBase::GradOpDescMakerBase;
211

Y
Yu Yang 已提交
212
  std::vector<std::unique_ptr<framework::OpDesc>> operator()() const override {
213
    auto x_grads = InputGrad("X", false);
Y
Yu Yang 已提交
214
    std::vector<std::unique_ptr<framework::OpDesc>> grad_ops;
215 216 217 218
    grad_ops.reserve(x_grads.size());
    auto og = OutputGrad("Out");
    std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops),
                   [&og](const std::string& x_grad) {
Y
Yu Yang 已提交
219
                     auto* grad_op = new framework::OpDesc();
Y
Yu Yang 已提交
220 221 222 223
                     grad_op->SetType("scale");
                     grad_op->SetInput("X", og);
                     grad_op->SetOutput("Out", {x_grad});
                     grad_op->SetAttr("scale", 1.0f);
Y
Yu Yang 已提交
224
                     return std::unique_ptr<framework::OpDesc>(grad_op);
225 226
                   });
    return grad_ops;
227 228 229 230 231 232 233
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
234

Q
QI JUN 已提交
235 236
REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker,
                  ops::SumOpVarTypeInference);
237

Q
QI JUN 已提交
238 239 240 241 242
REGISTER_OP_CPU_KERNEL(
    sum, ops::SumKernel<paddle::platform::CPUDeviceContext, float>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, double>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int>,
    ops::SumKernel<paddle::platform::CPUDeviceContext, int64_t>);