cascade_rcnn.py 4.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
W
wangguanzhong 已提交
20
from ppdet.core.workspace import register, create
Q
qingqing01 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
from .meta_arch import BaseArch

__all__ = ['CascadeRCNN']


@register
class CascadeRCNN(BaseArch):
    __category__ = 'architecture'
    __inject__ = [
        'bbox_post_process',
        'mask_post_process',
    ]

    def __init__(self,
                 backbone,
                 rpn_head,
                 bbox_head,
                 bbox_post_process,
                 neck=None,
                 mask_head=None,
W
wangguanzhong 已提交
41
                 mask_post_process=None):
Q
qingqing01 已提交
42 43 44 45 46 47 48 49
        super(CascadeRCNN, self).__init__()
        self.backbone = backbone
        self.rpn_head = rpn_head
        self.bbox_head = bbox_head
        self.bbox_post_process = bbox_post_process
        self.neck = neck
        self.mask_head = mask_head
        self.mask_post_process = mask_post_process
W
wangguanzhong 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
        self.with_mask = mask_head is not None

    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        backbone = create(cfg['backbone'])
        kwargs = {'input_shape': backbone.out_shape}
        neck = cfg['neck'] and create(cfg['neck'], **kwargs)

        out_shape = neck and neck.out_shape or backbone.out_shape
        kwargs = {'input_shape': out_shape}
        rpn_head = create(cfg['rpn_head'], **kwargs)
        bbox_head = create(cfg['bbox_head'], **kwargs)

        out_shape = neck and out_shape or bbox_head.get_head().out_shape
        kwargs = {'input_shape': out_shape}
        mask_head = cfg['mask_head'] and create(cfg['mask_head'], **kwargs)
        return {
            'backbone': backbone,
            'neck': neck,
            "rpn_head": rpn_head,
            "bbox_head": bbox_head,
            "mask_head": mask_head,
        }
Q
qingqing01 已提交
73

W
wangguanzhong 已提交
74
    def _forward(self):
Q
qingqing01 已提交
75 76
        body_feats = self.backbone(self.inputs)
        if self.neck is not None:
W
wangguanzhong 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
            body_feats = self.neck(body_feats)

        if self.training:
            rois, rois_num, rpn_loss = self.rpn_head(body_feats, self.inputs)
            bbox_loss, bbox_feat = self.bbox_head(body_feats, rois, rois_num,
                                                  self.inputs)
            rois, rois_num = self.bbox_head.get_assigned_rois()
            bbox_targets = self.bbox_head.get_assigned_targets()
            if self.with_mask:
                mask_loss = self.mask_head(body_feats, rois, rois_num,
                                           self.inputs, bbox_targets, bbox_feat)
                return rpn_loss, bbox_loss, mask_loss
            else:
                return rpn_loss, bbox_loss, {}
        else:
            rois, rois_num, _ = self.rpn_head(body_feats, self.inputs)
            preds, _ = self.bbox_head(body_feats, rois, rois_num, self.inputs)
            refined_rois = self.bbox_head.get_refined_rois()

            im_shape = self.inputs['im_shape']
            scale_factor = self.inputs['scale_factor']

            bbox, bbox_num = self.bbox_post_process(
                preds, (refined_rois, rois_num), im_shape, scale_factor)
            # rescale the prediction back to origin image
            bbox_pred = self.bbox_post_process.get_pred(bbox, bbox_num,
                                                        im_shape, scale_factor)
            if not self.with_mask:
                return bbox_pred, bbox_num, None
            mask_out = self.mask_head(body_feats, bbox, bbox_num, self.inputs)
            origin_shape = self.bbox_post_process.get_origin_shape()
            mask_pred = self.mask_post_process(mask_out[:, 0, :, :], bbox_pred,
                                               bbox_num, origin_shape)
            return bbox_pred, bbox_num, mask_pred
Q
qingqing01 已提交
111 112

    def get_loss(self, ):
W
wangguanzhong 已提交
113
        rpn_loss, bbox_loss, mask_loss = self._forward()
Q
qingqing01 已提交
114
        loss = {}
W
wangguanzhong 已提交
115 116
        loss.update(rpn_loss)
        loss.update(bbox_loss)
Q
qingqing01 已提交
117
        if self.with_mask:
W
wangguanzhong 已提交
118
            loss.update(mask_loss)
Q
qingqing01 已提交
119 120 121 122 123
        total_loss = paddle.add_n(list(loss.values()))
        loss.update({'loss': total_loss})
        return loss

    def get_pred(self):
W
wangguanzhong 已提交
124
        bbox_pred, bbox_num, mask_pred = self._forward()
Q
qingqing01 已提交
125
        output = {
W
wangguanzhong 已提交
126
            'bbox': bbox_pred,
Q
qingqing01 已提交
127 128 129
            'bbox_num': bbox_num,
        }
        if self.with_mask:
W
wangguanzhong 已提交
130
            output.update({'mask': mask_pred})
Q
qingqing01 已提交
131
        return output