keypoint_hrhrnet.py 10.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. 
#   
# Licensed under the Apache License, Version 2.0 (the "License");   
# you may not use this file except in compliance with the License.  
# You may obtain a copy of the License at   
#   
#     http://www.apache.org/licenses/LICENSE-2.0    
#   
# Unless required by applicable law or agreed to in writing, software   
# distributed under the License is distributed on an "AS IS" BASIS, 
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.  
# See the License for the specific language governing permissions and   
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from scipy.optimize import linear_sum_assignment
from collections import abc, defaultdict
import numpy as np
import paddle

from ppdet.core.workspace import register, create, serializable
from .meta_arch import BaseArch
from .. import layers as L
from ..keypoint_utils import transpred

__all__ = ['HigherHrnet']


@register
class HigherHrnet(BaseArch):
    __category__ = 'architecture'

    def __init__(self,
                 backbone='Hrnet',
                 hrhrnet_head='HigherHrnetHead',
                 post_process='HrHrnetPostProcess',
                 eval_flip=True,
                 flip_perm=None):
        """
        HigherHrnet network, see https://arxiv.org/abs/

        Args:
            backbone (nn.Layer): backbone instance
            hrhrnet_head (nn.Layer): keypoint_head instance
            bbox_post_process (object): `BBoxPostProcess` instance
        """
        super(HigherHrnet, self).__init__()
        self.backbone = backbone
        self.hrhrnet_head = hrhrnet_head
        self.post_process = HrHrnetPostProcess()
        self.flip = eval_flip
        self.flip_perm = paddle.to_tensor(flip_perm)
        self.deploy = False

    @classmethod
    def from_config(cls, cfg, *args, **kwargs):
        # backbone
        backbone = create(cfg['backbone'])
        # head
        kwargs = {'input_shape': backbone.out_shape}
        hrhrnet_head = create(cfg['hrhrnet_head'], **kwargs)
        post_process = create(cfg['post_process'])

        return {
            'backbone': backbone,
            "hrhrnet_head": hrhrnet_head,
            "post_process": post_process,
        }

    def _forward(self):
        batchsize = self.inputs['image'].shape[0]
        if self.flip and not self.training and not self.deploy:
            self.inputs['image'] = paddle.concat(
                (self.inputs['image'], paddle.flip(self.inputs['image'], [3])))
        body_feats = self.backbone(self.inputs)

        if self.training:
            return self.hrhrnet_head(body_feats, self.inputs)
        else:
            outputs = self.hrhrnet_head(body_feats)
            if self.deploy:
                return outputs, [1]
            if self.flip:
                outputs = [paddle.split(o, 2) for o in outputs]
                output_rflip = [
                    paddle.flip(paddle.gather(o[1], self.flip_perm, 1), [3])
                    for o in outputs
                ]
                output1 = [o[0] for o in outputs]
                heatmap = (output1[0] + output_rflip[0]) / 2.
                tagmaps = [output1[1], output_rflip[1]]
                outputs = [heatmap] + tagmaps

            res_lst = []
            bboxnums = []
            for idx in range(batchsize):
                item = [o[idx:(idx + 1)] for o in outputs]

                h = self.inputs['im_shape'][idx, 0].numpy().item()
                w = self.inputs['im_shape'][idx, 1].numpy().item()
                kpts, scores = self.post_process(item, h, w)
                res_lst.append([kpts, scores])
                bboxnums.append(1)

            return res_lst, bboxnums

    def get_loss(self):
        return self._forward()

    def get_pred(self):
        outputs = {}
        res_lst, bboxnums = self._forward()
        outputs['keypoint'] = res_lst
        outputs['bbox_num'] = bboxnums
        return outputs


@register
@serializable
class HrHrnetPostProcess(object):
    def __init__(self, max_num_people=30, heat_thresh=0.2, tag_thresh=1.):
        self.interpolate = L.Upsample(2, mode='bilinear')
        self.pool = L.MaxPool(5, 1, 2)
        self.max_num_people = max_num_people
        self.heat_thresh = heat_thresh
        self.tag_thresh = tag_thresh

    def lerp(self, j, y, x, heatmap):
        H, W = heatmap.shape[-2:]
        left = np.clip(x - 1, 0, W - 1)
        right = np.clip(x + 1, 0, W - 1)
        up = np.clip(y - 1, 0, H - 1)
        down = np.clip(y + 1, 0, H - 1)
        offset_y = np.where(heatmap[j, down, x] > heatmap[j, up, x], 0.25,
                            -0.25)
        offset_x = np.where(heatmap[j, y, right] > heatmap[j, y, left], 0.25,
                            -0.25)
        return offset_y + 0.5, offset_x + 0.5

    def __call__(self, inputs, original_height, original_width):

        # resize to image size
        inputs = [self.interpolate(x) for x in inputs]
        # aggregate
        heatmap = inputs[0]
        if len(inputs) == 3:
            tagmap = paddle.concat(
                (inputs[1].unsqueeze(4), inputs[2].unsqueeze(4)), axis=4)
        else:
            tagmap = inputs[1].unsqueeze(4)

        N, J, H, W = heatmap.shape
        assert N == 1, "only support batch size 1"
        # topk
        maximum = self.pool(heatmap)
        maxmap = heatmap * (heatmap == maximum)
        maxmap = maxmap.reshape([N, J, -1])
        heat_k, inds_k = maxmap.topk(self.max_num_people, axis=2)
        heatmap = heatmap[0].cpu().detach().numpy()
        tagmap = tagmap[0].cpu().detach().numpy()
        heats = heat_k[0].cpu().detach().numpy()
        inds_np = inds_k[0].cpu().detach().numpy()
        y = inds_np // W
        x = inds_np % W
        tags = tagmap[np.arange(J)[None, :].repeat(self.max_num_people),
                      y.flatten(), x.flatten()].reshape(J, -1, tagmap.shape[-1])
        coords = np.stack((y, x), axis=2)
        # threshold
        mask = heats > self.heat_thresh
        # cluster
        cluster = defaultdict(lambda: {
            'coords': np.zeros((J, 2), dtype=np.float32),
            'scores': np.zeros(J, dtype=np.float32),
            'tags': []
        })
        for jid, m in enumerate(mask):
            num_valid = m.sum()
            if num_valid == 0:
                continue
            valid_inds = np.where(m)[0]
            valid_tags = tags[jid, m, :]
            if len(cluster) == 0:  # initialize
                for i in valid_inds:
                    tag = tags[jid, i]
                    key = tag[0]
                    cluster[key]['tags'].append(tag)
                    cluster[key]['scores'][jid] = heats[jid, i]
                    cluster[key]['coords'][jid] = coords[jid, i]
                continue
            candidates = list(cluster.keys())[:self.max_num_people]
            centroids = [
                np.mean(
                    cluster[k]['tags'], axis=0) for k in candidates
            ]
            num_clusters = len(centroids)
            # shape is (num_valid, num_clusters, tag_dim)
            dist = valid_tags[:, None, :] - np.array(centroids)[None, ...]
            l2_dist = np.linalg.norm(dist, ord=2, axis=2)
            # modulate dist with heat value, see `use_detection_val`
            cost = np.round(l2_dist) * 100 - heats[jid, m, None]
            # pad the cost matrix, otherwise new pose are ignored
            if num_valid > num_clusters:
                cost = np.pad(cost, ((0, 0), (0, num_valid - num_clusters)),
                              constant_values=((0, 0), (0, 1e-10)))
            rows, cols = linear_sum_assignment(cost)
            for y, x in zip(rows, cols):
                tag = tags[jid, y]
                if y < num_valid and x < num_clusters and \
                   l2_dist[y, x] < self.tag_thresh:
                    key = candidates[x]  # merge to cluster
                else:
                    key = tag[0]  # initialize new cluster
                cluster[key]['tags'].append(tag)
                cluster[key]['scores'][jid] = heats[jid, y]
                cluster[key]['coords'][jid] = coords[jid, y]

        # shape is [k, J, 2] and [k, J]
        pose_tags = np.array([cluster[k]['tags'] for k in cluster])
        pose_coords = np.array([cluster[k]['coords'] for k in cluster])
        pose_scores = np.array([cluster[k]['scores'] for k in cluster])
        valid = pose_scores > 0

        pose_kpts = np.zeros((pose_scores.shape[0], J, 3), dtype=np.float32)
        if valid.sum() == 0:
            return pose_kpts, pose_kpts

        # refine coords
        valid_coords = pose_coords[valid].astype(np.int32)
        y = valid_coords[..., 0].flatten()
        x = valid_coords[..., 1].flatten()
        _, j = np.nonzero(valid)
        offsets = self.lerp(j, y, x, heatmap)
        pose_coords[valid, 0] += offsets[0]
        pose_coords[valid, 1] += offsets[1]

        # mean score before salvage
        mean_score = pose_scores.mean(axis=1)
        pose_kpts[valid, 2] = pose_scores[valid]

        # TODO can we remove the outermost loop altogether
        # salvage missing joints

        if True:
            for pid, coords in enumerate(pose_coords):
                # vj = np.nonzero(valid[pid])[0]
                # vyx = coords[valid[pid]].astype(np.int32)
                # tag_mean = tagmap[vj, vyx[:, 0], vyx[:, 1]].mean(axis=0)

                tag_mean = np.array(pose_tags[pid]).mean(
                    axis=0)  #TODO: replace tagmap sample by history record

                norm = np.sum((tagmap - tag_mean)**2, axis=3)**0.5
                score = heatmap - np.round(norm)  # (J, H, W)
                flat_score = score.reshape(J, -1)
                max_inds = np.argmax(flat_score, axis=1)
                max_scores = np.max(flat_score, axis=1)
                salvage_joints = (pose_scores[pid] == 0) & (max_scores > 0)
                if salvage_joints.sum() == 0:
                    continue
                y = max_inds[salvage_joints] // W
                x = max_inds[salvage_joints] % W
                offsets = self.lerp(salvage_joints.nonzero()[0], y, x, heatmap)
                y = y.astype(np.float32) + offsets[0]
                x = x.astype(np.float32) + offsets[1]
                pose_coords[pid][salvage_joints, 0] = y
                pose_coords[pid][salvage_joints, 1] = x
                pose_kpts[pid][salvage_joints, 2] = max_scores[salvage_joints]
        pose_kpts[..., :2] = transpred(pose_coords[..., :2][..., ::-1],
                                       original_height, original_width,
                                       min(H, W))
        return pose_kpts, mean_score