device_context.h 12.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
QI JUN 已提交
2 3 4 5 6 7 8 9 10 11 12
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once

13
#include <future>  // NOLINT
D
dzhwinter 已提交
14
#include <memory>
Y
yuyang18 已提交
15
#include <mutex>  // NOLINT
16
#include <string>
D
dzhwinter 已提交
17
#include <unordered_map>
18
#include <utility>
19
#include <vector>
Y
Yu Yang 已提交
20
#include "paddle/fluid/memory/malloc.h"
21
#include "paddle/fluid/platform/temporary_allocator.h"
22
#ifdef PADDLE_WITH_CUDA
23
#include "paddle/fluid/platform/cuda_helper.h"
Y
Yi Wang 已提交
24 25 26
#include "paddle/fluid/platform/dynload/cublas.h"
#include "paddle/fluid/platform/dynload/cudnn.h"
#include "paddle/fluid/platform/gpu_info.h"
Q
QI JUN 已提交
27
#endif
D
dzhwinter 已提交
28

T
tensor-tang 已提交
29
#ifdef PADDLE_WITH_MKLDNN
L
luotao1 已提交
30
#include "mkldnn.hpp"
T
tensor-tang 已提交
31 32
#endif

33 34
#include <map>
#include "glog/logging.h"
Y
Yi Wang 已提交
35 36
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
S
sneaxiy 已提交
37 38 39
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/stream_callback_manager.h"
#endif
Q
qijun 已提交
40
#include "unsupported/Eigen/CXX11/Tensor"
Q
QI JUN 已提交
41 42 43 44

namespace paddle {
namespace platform {

C
chengduo 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
/*! \brief device temporary allocator singleton.
 *
 * Some operator needs temporary memory during computation, for example,
 * conv_gemm, which needs use col to store the result of im2col. If we
 * create a stack memory which is used by CUDA Kernel, before the
 * Computation(...) returns, we should add ctx->Wait(), because the
 * execution of CUDA is async, if there doesn't have ctx->Wait(),
 * the temporary memory will be released before the CUDA Kernel uses
 * it.
 *
 * DeviceTemporaryAllocator is a singleton, which contains a
 * `TemporaryAllocator` for each <Place, Stream>. And the TemporaryAllocator
 * contains a temp_allocation_queue which is used to store the temporary
 * allocations. The allocation, which is allocated by TemporaryAllocator,
 * is a unique_ptr,  and when it is not held by any variable, it will be
 * pushed into the temp_allocation_queue. There are two opportunities to free
 * the allocations of temp_allocation_queue:
 *  - when the Stream calls cudaStreamSynchronize;
 *  - when the allocation size of opportunities exceeds a certain threshold
64
 *    (defined by FLAGS_limit_of_tmp_allocation).
C
chengduo 已提交
65 66
 *
 * */
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
class DeviceTemporaryAllocator {
 public:
  static DeviceTemporaryAllocator& Instance() {
    PADDLE_ENFORCE_NOT_NULL(allocators,
                            "Need to Create DeviceTemporaryAllocator first!");
    return *allocators;
  }

  static DeviceTemporaryAllocator& Init() {
    if (allocators == nullptr) {
      allocators = new DeviceTemporaryAllocator();
    }
    return *allocators;
  }

/*! \brief  Return handle of single temporary allocator. */
#ifdef PADDLE_WITH_CUDA
  platform::TemporaryAllocator& Get(const platform::Place& place,
                                    const cudaStream_t& stream);
#endif
  template <typename DeviceContext>
  platform::TemporaryAllocator& Get(const DeviceContext& dev_ctx);

  platform::TemporaryAllocator& Get(const platform::Place& place);

 private:
  DeviceTemporaryAllocator() : cpu_allocator_(platform::CPUPlace()) {}

  static DeviceTemporaryAllocator* allocators;

  platform::TemporaryAllocator cpu_allocator_;

#ifdef PADDLE_WITH_CUDA
  std::map<std::pair<platform::Place, cudaStream_t>,
           std::unique_ptr<platform::TemporaryAllocator>>
      device_allocator_;
#endif

  std::mutex mtx_;

  DISABLE_COPY_AND_ASSIGN(DeviceTemporaryAllocator);
};

Q
QI JUN 已提交
110 111 112
class DeviceContext {
 public:
  virtual ~DeviceContext() {}
L
liaogang 已提交
113
  virtual Place GetPlace() const = 0;
Q
QI JUN 已提交
114

115
  virtual void Wait() const {}
Q
QI JUN 已提交
116 117
};

Q
qijun 已提交
118 119
class CPUDeviceContext : public DeviceContext {
 public:
120
  CPUDeviceContext();
Q
qijun 已提交
121
  explicit CPUDeviceContext(CPUPlace place);
Q
qijun 已提交
122

123
  Eigen::DefaultDevice* eigen_device() const;
Q
qijun 已提交
124

L
liaogang 已提交
125
  Place GetPlace() const override;
Y
Yu Yang 已提交
126

Q
qijun 已提交
127
 private:
D
dzhwinter 已提交
128
  CPUPlace place_;
Q
qijun 已提交
129
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
Q
QI JUN 已提交
130 131
};

Y
Yang Yu 已提交
132 133 134 135 136 137 138 139
template <typename Place>
struct DefaultDeviceContextType;

template <>
struct DefaultDeviceContextType<platform::CPUPlace> {
  using TYPE = CPUDeviceContext;
};

140
#ifdef PADDLE_WITH_CUDA
141

Q
qijun 已提交
142
class EigenCudaStreamDevice;
S
sneaxiy 已提交
143 144 145 146 147 148 149 150 151 152 153 154
class CudnnHolder {
 public:
  CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place);
  ~CudnnHolder();
  cudnnHandle_t cudnn_handle() const { return cudnn_handle_; }

 private:
  friend class CudnnWorkspaceHandle;
  void ReallocateWorkspace(size_t required_workspace_len);

  template <typename Callback>
  void RunFuncImpl(Callback&& cudnn_func, size_t required_workspace_len) {
Y
Yu Yang 已提交
155
    if (required_workspace_len > WorkspaceSize()) {
S
sneaxiy 已提交
156 157
      ReallocateWorkspace(required_workspace_len);
    }
Y
Yu Yang 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    cudnn_func(WorkspacePtr());
  }

  inline void* WorkspacePtr() {
    if (workspace_) {
      return workspace_->ptr();
    } else {
      return nullptr;
    }
  }

  inline size_t WorkspaceSize() {
    if (workspace_) {
      return workspace_->size();
    } else {
      return 0;
    }
S
sneaxiy 已提交
175 176 177 178 179
  }

  std::mutex& Mutex() { return mtx_; }

  cudnnHandle_t cudnn_handle_;
Y
Yu Yang 已提交
180
  memory::AllocationPtr workspace_;
S
sneaxiy 已提交
181 182 183 184 185 186

  const cudaStream_t* stream_;  // not owned;
  const CUDAPlace place_;

  std::mutex mtx_;
};
D
dongzhihong 已提交
187

S
sneaxiy 已提交
188 189 190 191
class CudnnWorkspaceHandle {
 public:
  /*! \brief The lock would not be acquired when constructor calls.
   *  The lock would be acquired when RunFunc() is called first time. */
S
sneaxiy 已提交
192
  inline explicit CudnnWorkspaceHandle(CudnnHolder* holder) : holder_(holder) {}
S
sneaxiy 已提交
193 194 195

  /*! \brief Thread which call RunFunc() would acquire the lock first
   *  before invoking cudnn functions. */
S
sneaxiy 已提交
196 197 198 199 200 201 202 203
  template <typename Callback>
  inline void RunFunc(Callback&& cudnn_func, size_t required_workspace_len) {
    if (!guard_) {
      guard_.reset(new std::lock_guard<std::mutex>(holder_->Mutex()));
    }
    holder_->RunFuncImpl(std::forward<Callback>(cudnn_func),
                         required_workspace_len);
  }
S
sneaxiy 已提交
204

S
sneaxiy 已提交
205 206
  CudnnWorkspaceHandle(CudnnWorkspaceHandle&&) = default;
  CudnnWorkspaceHandle& operator=(CudnnWorkspaceHandle&&) = delete;
S
sneaxiy 已提交
207 208 209 210 211 212

 private:
  CudnnHolder* holder_;  // not own
  std::unique_ptr<std::lock_guard<std::mutex>> guard_;
};

213
class CUDADeviceContext : public DeviceContext {
Q
QI JUN 已提交
214
 public:
D
dzhwinter 已提交
215
  explicit CUDADeviceContext(CUDAPlace place);
216
  virtual ~CUDADeviceContext();
Q
QI JUN 已提交
217

218
  /*! \brief  Wait for all operations completion in the stream. */
219
  void Wait() const override;
Q
QI JUN 已提交
220

221
  /*! \brief  Return place in the device context. */
L
liaogang 已提交
222
  Place GetPlace() const override;
223

K
Kexin Zhao 已提交
224
  /*! \brief  Return compute capability in the device context. */
K
Kexin Zhao 已提交
225 226
  int GetComputeCapability() const;

227 228 229
  /*! \brief  Return the max physical thread count in the device context */
  int GetMaxPhysicalThreadCount() const;

230 231 232
  /*! \brief  Return eigen device in the device context. */
  Eigen::GpuDevice* eigen_device() const;

233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
  /*! \brief  Call cublas function safely. */
  template <typename Callback>
  inline void CublasCall(Callback&& callback) const {
    cublas_handle_->Call(std::forward<Callback>(callback));
  }

  /*! \brief  Check whether tensor core is supported */
  bool tensor_core_available() const;

  /*! \brief  Call cublas function with Tensor Core safely. If
      Tensor Core is not available, use DEFAULT_MATH instead. */
  template <typename Callback>
  inline void TensorCoreCublasCallIfAvailable(Callback&& callback) const {
    if (cublas_tensor_core_handle_) {
      cublas_tensor_core_handle_->Call(std::forward<Callback>(callback));
    } else {
      cublas_handle_->Call(std::forward<Callback>(callback));
    }
  }
S
sneaxiy 已提交
252

253
  /*! \brief  Return cudnn  handle in the device context. */
254
  cudnnHandle_t cudnn_handle() const;
255

S
sneaxiy 已提交
256 257 258 259 260 261 262 263 264
  /*! \brief  Return a cudnn workspace handle to call multiple cudnn
   *  functions without interrupting by other threads.
   *  Once the first cudnn function is called by the handle, a lock
   *  would be acquired to prevent other threads from accessing the
   *  workspace. Once the handle is destructed, the lock would be released.
   *  CudnnWorkspaceHandle is an RAII object to implement thread-safe
   *  sequential cudnn function calls. */
  CudnnWorkspaceHandle cudnn_workspace_handle() const;

Q
init  
qijun 已提交
265
  /*! \brief  Return cuda stream in the device context. */
266
  cudaStream_t stream() const;
Q
QI JUN 已提交
267

Z
zhhsplendid 已提交
268
#if !defined(_WIN32)
Q
qingqing01 已提交
269 270 271 272 273
  /*! \brief  Return nccl communicators. */
  ncclComm_t nccl_comm() const { return nccl_comm_; }

  /*! \brief  Set nccl communicators. */
  void set_nccl_comm(ncclComm_t comm) { nccl_comm_ = comm; }
Z
zhhsplendid 已提交
274
#endif
Q
qingqing01 已提交
275

Y
Yu Yang 已提交
276 277 278 279 280 281
  template <typename Callback>
  void RecordEvent(cudaEvent_t ev, Callback callback) {
    callback();
    PADDLE_ENFORCE(cudaEventRecord(ev, stream_));
  }

S
sneaxiy 已提交
282 283 284 285 286
  template <typename Callback>
  void AddStreamCallback(Callback&& callback) const {
    callback_manager_->AddCallback(callback);
  }

S
fix bug  
sneaxiy 已提交
287
  void WaitStreamCallback() const { callback_manager_->Wait(); }
S
sneaxiy 已提交
288

Q
QI JUN 已提交
289
 private:
D
dzhwinter 已提交
290
  CUDAPlace place_;
Q
QI JUN 已提交
291

Q
qijun 已提交
292
  std::unique_ptr<Eigen::GpuDevice> eigen_device_;
Q
init  
qijun 已提交
293
  std::unique_ptr<EigenCudaStreamDevice> eigen_stream_;
294
  std::unique_ptr<CudnnHolder> cudnn_holder_;
295
  cudaStream_t stream_;
296 297 298

  std::unique_ptr<CublasHandleHolder> cublas_handle_;
  std::unique_ptr<CublasHandleHolder> cublas_tensor_core_handle_;
299

Z
zhhsplendid 已提交
300
#if !defined(_WIN32)
Q
qingqing01 已提交
301 302 303 304 305 306
  // NCCL communicator (single process version) for NCCL collective operations.
  // NCCL collective operations provides fast collectives over multiple GPUs
  // both within and across nodes.
  // But, this collectives is used for collectives over multiple GPUs within
  // nodes.
  ncclComm_t nccl_comm_{nullptr};
Z
zhhsplendid 已提交
307
#endif
Q
qingqing01 已提交
308

C
chengduo 已提交
309 310 311 312 313
  int compute_capability_;
  int runtime_version_;
  int driver_version_;
  int multi_process_;
  int max_threads_per_mp_;
Y
yuyang18 已提交
314

S
fix bug  
sneaxiy 已提交
315
  // StreamCallbackManager is thread-safe
S
sneaxiy 已提交
316
  std::unique_ptr<StreamCallbackManager> callback_manager_;
317

318
  DISABLE_COPY_AND_ASSIGN(CUDADeviceContext);
Q
QI JUN 已提交
319
};
Q
qijun 已提交
320

Y
Yang Yu 已提交
321 322
template <>
struct DefaultDeviceContextType<platform::CUDAPlace> {
Y
Yang Yu 已提交
323
  using TYPE = CUDADeviceContext;
Y
Yang Yu 已提交
324 325
};

C
chengduoZH 已提交
326
// Currently, CUDAPinnedDeviceContext is only used to data copying.
C
chengduoZH 已提交
327 328 329 330 331 332
class CUDAPinnedDeviceContext : public DeviceContext {
 public:
  CUDAPinnedDeviceContext();
  explicit CUDAPinnedDeviceContext(CUDAPinnedPlace place);

  Place GetPlace() const override;
C
chengduoZH 已提交
333

C
chengduoZH 已提交
334 335 336 337 338 339 340 341 342 343 344
  Eigen::DefaultDevice* eigen_device() const;

 private:
  CUDAPinnedPlace place_;
  std::unique_ptr<Eigen::DefaultDevice> eigen_device_;
};

template <>
struct DefaultDeviceContextType<platform::CUDAPinnedPlace> {
  using TYPE = CUDAPinnedDeviceContext;
};
Q
QI JUN 已提交
345
#endif
Q
qijun 已提交
346

T
tensor-tang 已提交
347
#ifdef PADDLE_WITH_MKLDNN
S
Sylwester Fraczek 已提交
348 349 350 351 352 353
using KeyBlob = std::unordered_map<std::string, std::shared_ptr<void>>;
using BlobMap = std::unordered_map<int, std::shared_ptr<KeyBlob>>;

void set_cur_thread_id(int);
int get_cur_thread_id(void);

T
tensor-tang 已提交
354 355 356 357 358
class MKLDNNDeviceContext : public CPUDeviceContext {
 public:
  explicit MKLDNNDeviceContext(CPUPlace place);

  /* \brief  Get the active engine */
359
  const mkldnn::engine& GetEngine() const { return engine_; }
T
tensor-tang 已提交
360

361 362
  // Set data to blob (i.e. name/data pair). Create blob if not existing
  void SetBlob(const std::string& name, std::shared_ptr<void> data) const;
T
tensor-tang 已提交
363

364 365
  // Find a saved blob. Return nullptr if not found
  std::shared_ptr<void> GetBlob(const std::string& name) const;
T
tensor-tang 已提交
366 367

 private:
368
  mkldnn::engine engine_;
369 370
  std::shared_ptr<BlobMap> p_blobmap_;
  std::shared_ptr<std::mutex> p_mutex_;
T
tensor-tang 已提交
371 372 373
};
#endif

D
dzhwinter 已提交
374 375 376 377 378
/*! \brief device context pool singleton */
class DeviceContextPool {
 public:
  explicit DeviceContextPool(const std::vector<platform::Place>& places);

Y
Yang Yu 已提交
379
  static DeviceContextPool& Instance() {
D
dzhwinter 已提交
380 381 382 383 384
    PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!");
    return *pool;
  }

  /*! \brief  Create should only called by Init function */
Y
Yang Yu 已提交
385
  static DeviceContextPool& Init(const std::vector<platform::Place>& places) {
D
dzhwinter 已提交
386 387 388 389 390 391 392
    if (pool == nullptr) {
      pool = new DeviceContextPool(places);
    }
    return *pool;
  }

  /*! \brief  Return handle of single device context. */
Y
Yu Yang 已提交
393
  platform::DeviceContext* Get(const platform::Place& place);
D
dzhwinter 已提交
394

Y
Yang Yu 已提交
395 396 397 398 399 400 401
  template <typename Place>
  const typename DefaultDeviceContextType<Place>::TYPE* GetByPlace(
      const Place& place) {
    return reinterpret_cast<
        const typename DefaultDeviceContextType<Place>::TYPE*>(Get(place));
  }

402 403
  size_t size() const { return device_contexts_.size(); }

D
dzhwinter 已提交
404 405
 private:
  static DeviceContextPool* pool;
406 407
  std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>
      device_contexts_;
D
dzhwinter 已提交
408 409 410
  DISABLE_COPY_AND_ASSIGN(DeviceContextPool);
};

Q
QI JUN 已提交
411 412
}  // namespace platform
}  // namespace paddle