infer.py 9.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import glob

import numpy as np
from PIL import Image

25 26 27 28 29 30 31 32 33 34 35
def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)

# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

36 37 38 39 40 41 42 43
from paddle import fluid

from ppdet.core.workspace import load_config, merge_config, create
from ppdet.modeling.model_input import create_feed
from ppdet.data.data_feed import create_reader

from ppdet.utils.eval_utils import parse_fetches
from ppdet.utils.cli import ArgsParser
44
from ppdet.utils.check import check_gpu
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
from ppdet.utils.visualizer import visualize_results
import ppdet.utils.checkpoint as checkpoint

import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def get_save_image_name(output_dir, image_path):
    """
    Get save image name from source image path.
    """
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
K
Kaipeng Deng 已提交
60
    image_name = os.path.split(image_path)[-1]
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
    name, ext = os.path.splitext(image_name)
    return os.path.join(output_dir, "{}".format(name)) + ext


def get_test_images(infer_dir, infer_img):
    """
    Get image path list in TEST mode
    """
    assert infer_img is not None or infer_dir is not None, \
        "--infer_img or --infer_dir should be set"
    assert infer_img is None or os.path.isfile(infer_img), \
            "{} is not a file".format(infer_img)
    assert infer_dir is None or os.path.isdir(infer_dir), \
            "{} is not a directory".format(infer_dir)
    images = []

    # infer_img has a higher priority
    if infer_img and os.path.isfile(infer_img):
        images.append(infer_img)
        return images

    infer_dir = os.path.abspath(infer_dir)
    assert os.path.isdir(infer_dir), \
        "infer_dir {} is not a directory".format(infer_dir)
    exts = ['jpg', 'jpeg', 'png', 'bmp']
    exts += [ext.upper() for ext in exts]
    for ext in exts:
        images.extend(glob.glob('{}/*.{}'.format(infer_dir, ext)))

    assert len(images) > 0, "no image found in {}".format(infer_dir)
    logger.info("Found {} inference images in total.".format(len(images)))

    return images


96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
def prune_feed_vars(feeded_var_names, target_vars, prog):
    """
    Filter out feed variables which are not in program,
    pruned feed variables are only used in post processing
    on model output, which are not used in program, such
    as im_id to identify image order, im_shape to clip bbox
    in image.
    """
    exist_var_names = []
    prog = prog.clone()
    prog = prog._prune(targets=target_vars)
    global_block = prog.global_block()
    for name in feeded_var_names:
        try:
            v = global_block.var(name)
            exist_var_names.append(v.name)
        except Exception:
            logger.info('save_inference_model pruned unused feed '
                        'variables {}'.format(name))
            pass
    return exist_var_names


119 120 121 122
def save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog):
    cfg_name = os.path.basename(FLAGS.config).split('.')[0]
    save_dir = os.path.join(FLAGS.output_dir, cfg_name)
    feeded_var_names = [var.name for var in feed_vars.values()]
W
wangguanzhong 已提交
123 124 125
    target_vars = list(test_fetches.values())
    feeded_var_names = prune_feed_vars(feeded_var_names, target_vars,
                                       infer_prog)
126 127
    logger.info("Save inference model to {}, input: {}, output: "
                "{}...".format(save_dir, feeded_var_names,
W
wangguanzhong 已提交
128 129 130 131 132 133 134 135
                               [var.name for var in target_vars]))
    fluid.io.save_inference_model(
        save_dir,
        feeded_var_names=feeded_var_names,
        target_vars=target_vars,
        executor=exe,
        main_program=infer_prog,
        params_filename="__params__")
136 137


138 139 140 141 142 143 144 145 146 147
def main():
    cfg = load_config(FLAGS.config)

    if 'architecture' in cfg:
        main_arch = cfg.architecture
    else:
        raise ValueError("'architecture' not specified in config file.")

    merge_config(FLAGS.opt)

148 149 150
    # check if set use_gpu=True in paddlepaddle cpu version
    check_gpu(cfg.use_gpu)

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
    if 'test_feed' not in cfg:
        test_feed = create(main_arch + 'TestFeed')
    else:
        test_feed = create(cfg.test_feed)

    test_images = get_test_images(FLAGS.infer_dir, FLAGS.infer_img)
    test_feed.dataset.add_images(test_images)

    place = fluid.CUDAPlace(0) if cfg.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    model = create(main_arch)

    startup_prog = fluid.Program()
    infer_prog = fluid.Program()
    with fluid.program_guard(infer_prog, startup_prog):
        with fluid.unique_name.guard():
            _, feed_vars = create_feed(test_feed, use_pyreader=False)
            test_fetches = model.test(feed_vars)
    infer_prog = infer_prog.clone(True)

    reader = create_reader(test_feed)
    feeder = fluid.DataFeeder(place=place, feed_list=feed_vars.values())

    exe.run(startup_prog)
    if cfg.weights:
        checkpoint.load_checkpoint(exe, infer_prog, cfg.weights)

179 180 181
    if FLAGS.save_inference_model:
        save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog)

182
    # parse infer fetches
183 184
    assert cfg.metric in ['COCO', 'VOC'], \
            "unknown metric type {}".format(cfg.metric)
185 186 187 188
    extra_keys = []
    if cfg['metric'] == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg['metric'] == 'VOC':
189
        extra_keys = ['im_id', 'im_shape']
190 191 192 193 194 195 196 197 198 199 200 201 202 203
    keys, values, _ = parse_fetches(test_fetches, infer_prog, extra_keys)

    # parse dataset category
    if cfg.metric == 'COCO':
        from ppdet.utils.coco_eval import bbox2out, mask2out, get_category_info
    if cfg.metric == "VOC":
        from ppdet.utils.voc_eval import bbox2out, get_category_info

    anno_file = getattr(test_feed.dataset, 'annotation', None)
    with_background = getattr(test_feed, 'with_background', True)
    use_default_label = getattr(test_feed, 'use_default_label', False)
    clsid2catid, catid2name = get_category_info(anno_file, with_background,
                                                use_default_label)

204 205 206 207 208 209
    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
    imid2path = reader.imid2path
    for iter_id, data in enumerate(reader()):
        outs = exe.run(infer_prog,
                       feed=feeder.feed(data),
                       fetch_list=values,
                       return_numpy=False)
        res = {
            k: (np.array(v), v.recursive_sequence_lengths())
            for k, v in zip(keys, outs)
        }
        logger.info('Infer iter {}'.format(iter_id))

        bbox_results = None
        mask_results = None
        if 'bbox' in res:
            bbox_results = bbox2out([res], clsid2catid, is_bbox_normalized)
        if 'mask' in res:
            mask_results = mask2out([res], clsid2catid,
                                    model.mask_head.resolution)

        # visualize result
        im_ids = res['im_id'][0]
        for im_id in im_ids:
            image_path = imid2path[int(im_id)]
            image = Image.open(image_path).convert('RGB')
            image = visualize_results(image,
J
jerrywgz 已提交
236 237
                                      int(im_id), catid2name,
                                      FLAGS.draw_threshold, bbox_results,
238
                                      mask_results)
239 240
            save_name = get_save_image_name(FLAGS.output_dir, image_path)
            logger.info("Detection bbox results save in {}".format(save_name))
J
jerrywgz 已提交
241
            image.save(save_name, quality=95)
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "--infer_dir",
        type=str,
        default=None,
        help="Directory for images to perform inference on.")
    parser.add_argument(
        "--infer_img",
        type=str,
        default=None,
        help="Image path, has higher priority over --infer_dir")
    parser.add_argument(
        "--output_dir",
        type=str,
        default="output",
        help="Directory for storing the output visualization files.")
J
jerrywgz 已提交
261 262 263 264 265
    parser.add_argument(
        "--draw_threshold",
        type=float,
        default=0.5,
        help="Threshold to reserve the result for visualization.")
266 267 268 269 270
    parser.add_argument(
        "--save_inference_model",
        action='store_true',
        default=False,
        help="Save inference model in output_dir if True.")
271 272
    FLAGS = parser.parse_args()
    main()