roi_extractor.py 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid

from ppdet.core.workspace import register
from ppdet.modeling.ops import RoIAlign, RoIPool

__all__ = ['RoIPool', 'RoIAlign', 'FPNRoIAlign']


@register
class FPNRoIAlign(object):
    """
    RoI align pooling for FPN feature maps
    Args:
        sampling_ratio (int): number of sampling points
        min_level (int): lowest level of FPN layer
        max_level (int): highest level of FPN layer
        canconical_level (int): the canconical FPN feature map level
        canonical_size (int): the canconical FPN feature map size
W
wangguanzhong 已提交
37 38
        box_resolution (int): box resolution
        mask_resolution (int): mask roi resolution
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    """

    def __init__(self,
                 sampling_ratio=0,
                 min_level=2,
                 max_level=5,
                 canconical_level=4,
                 canonical_size=224,
                 box_resolution=7,
                 mask_resolution=14):
        super(FPNRoIAlign, self).__init__()
        self.sampling_ratio = sampling_ratio
        self.min_level = min_level
        self.max_level = max_level
        self.canconical_level = canconical_level
        self.canonical_size = canonical_size
        self.box_resolution = box_resolution
        self.mask_resolution = mask_resolution

    def __call__(self, head_inputs, rois, spatial_scale, is_mask=False):
        """
        Adopt RoI align onto several level of feature maps to get RoI features.
        Distribute RoIs to different levels by area and get a list of RoI
        features by distributed RoIs and their corresponding feature maps.

        Returns:
            roi_feat(Variable): RoI features with shape of [M, C, R, R],
                where M is the number of RoIs and R is RoI resolution

        """
        k_min = self.min_level
        k_max = self.max_level
        num_roi_lvls = k_max - k_min + 1
        name_list = list(head_inputs.keys())
        input_name_list = name_list[-num_roi_lvls:]
        spatial_scale = spatial_scale[-num_roi_lvls:]
        rois_dist, restore_index = fluid.layers.distribute_fpn_proposals(
            rois, k_min, k_max, self.canconical_level, self.canonical_size)
        # rois_dist is in ascend order
        roi_out_list = []
        resolution = is_mask and self.mask_resolution or self.box_resolution
        for lvl in range(num_roi_lvls):
            name_index = num_roi_lvls - lvl - 1
            rois_input = rois_dist[lvl]
            head_input = head_inputs[input_name_list[name_index]]
            sc = spatial_scale[name_index]
            roi_out = fluid.layers.roi_align(
                input=head_input,
                rois=rois_input,
                pooled_height=resolution,
                pooled_width=resolution,
                spatial_scale=sc,
                sampling_ratio=self.sampling_ratio)
            roi_out_list.append(roi_out)
        roi_feat_shuffle = fluid.layers.concat(roi_out_list)
        roi_feat_ = fluid.layers.gather(roi_feat_shuffle, restore_index)
        roi_feat = fluid.layers.lod_reset(roi_feat_, rois)

        return roi_feat