teacher_student_sigmoid_loss_op.cc 7.5 KB
Newer Older
H
add API  
heqiaozhi 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
H
heqiaozhi 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/teacher_student_sigmoid_loss_op.h"
H
Huihuang Zheng 已提交
16 17 18

#include <memory>

H
heqiaozhi 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
#include "paddle/fluid/operators/math/math_function.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class TeacherStudentSigmoidLossOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput("Y"), "Output(Y) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    PADDLE_ENFORCE_EQ(x_dims.size(), 2UL, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2UL,
                      "Input(Label)'s rank should be 2.");
H
heqiaozhi 已提交
40 41 42 43 44 45 46 47
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
                        "The 1st dimension of Input(X) and Input(Label) should "
                        "be equal.");
      PADDLE_ENFORCE_EQ(label_dims[1], 1UL,
                        "The 2nd dimension of "
                        "Input(Label) should be 1.");
    }
H
heqiaozhi 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
    ctx->SetOutputDim("Y", {x_dims[0], 1});
    ctx->ShareLoD("X", /*->*/ "Y");
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }
};

H
Huihuang Zheng 已提交
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
class TeacherStudentSigmoidLossGradOpDescMaker
    : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());

    op->SetType("teacher_student_sigmoid_loss_grad");

    op->SetInput("X", Input("X"));
    op->SetInput("Label", Input("Label"));
    op->SetInput(framework::GradVarName("Y"), OutputGrad("Y"));

    op->SetOutput(framework::GradVarName("X"), InputGrad("X"));

    op->SetAttrMap(Attrs());
    return op;
  }
};

H
heqiaozhi 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
class TeacherStudentSigmoidLossGradientOp
    : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput("Label"), "Input(Label) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Y")),
                   "Input(Y@GRAD) should be not null.");
    PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")),
                   "Output(X@GRAD) should be not null.");

    auto x_dims = ctx->GetInputDim("X");
    auto label_dims = ctx->GetInputDim("Label");
    auto dy_dims = ctx->GetInputDim(framework::GradVarName("Y"));
    PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(dy_dims.size(), 2, "Input(Y@Grad)'s rank should be 2.");
    PADDLE_ENFORCE_EQ(label_dims.size(), 2, "Input(Label)'s rank should be 2.");
H
heqiaozhi 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117
    if (ctx->IsRuntime()) {
      PADDLE_ENFORCE_EQ(x_dims[0], label_dims[0],
                        "The 1st dimension of Input(X) and Input(Label) should "
                        "be equal.");
      PADDLE_ENFORCE_EQ(
          x_dims[0], dy_dims[0],
          "The 1st dimension of Input(X) and Input(Y@Grad) should "
          "be equal.");
      PADDLE_ENFORCE_EQ(dy_dims[1], 1,
                        "The 2nd dimension of Input(Y@Grad) should be 1.");
      PADDLE_ENFORCE_EQ(label_dims[1], 1,
                        "When Attr(soft_label) == false, the 2nd dimension of "
                        "Input(Label) should be 1.");
    }
H
heqiaozhi 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    ctx->SetOutputDim(framework::GradVarName("X"), x_dims);
    ctx->ShareLoD("X", framework::GradVarName("X"));
  }

 protected:
  // Explicitly set that the data type of computation kernel of
  // teacher_student_sigmoid_loss
  // is determined by its input "X".
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(ctx.Input<Tensor>("X")->type(),
                                   ctx.device_context());
  }
};

class TeacherStudentSigmoidLossOpMaker
    : public framework::OpProtoAndCheckerMaker {
 public:
  void Make() override {
    AddInput("X",
             "(Tensor, default Tensor<float>), a 2-D tensor with shape [N x 1],"
             " where N is the batch size and D is the output. "
             "This input is a probability computed by the previous operator, "
             "which is almost always the result of a softmax operator.");
    AddInput("Label",
             "(Tensor), the ground truth which is a 2-D tensor. "
             "Label is a Tensor<float> with shape [N x 1]. ");
    AddOutput("Y",
              "(Tensor, default Tensor<float>), a 2-D tensor with shape "
              "[N x 1]. The teacher student sigmoid loss.");
148 149
    AddAttr<float>(
        "soft_max_up_bound",
H
heqiaozhi 已提交
150
        "fp32, if input > soft_max_up_bound, input will be bound, default 15.0")
151
        .SetDefault(15.0);
H
heqiaozhi 已提交
152 153 154
    AddAttr<float>("soft_max_lower_bound",
                   "fp32, if input < soft_max_lower_bound, input will be "
                   "bound, default -15.0")
H
heqiaozhi 已提交
155 156 157 158 159 160 161 162
        .SetDefault(-15.0);
    AddComment(R"DOC(
TeacherStudentSigmoidLoss Operator.

It's similarity to SigmoidCrossEntropyWithLogits Operator. The difference is that
we add another label(z') to original.
        loss = max(x, 0) - x * z + log(1 + exp(-abs(x))) + max(x, 0) - x * z' + log(1 + exp(-abs(x)))
        z is click or not
163
        z' is teacher value 
H
heqiaozhi 已提交
164 165 166
        label = {-2, -1, [0, 2]}
        when z' is not exist, clk = 0 : label = -2;
        when z' is not exist, clk = 1 : label = -1;
H
heqiaozhi 已提交
167
        when z' is exist , clk = 0 : label = 0 + z';
H
heqiaozhi 已提交
168 169 170 171 172 173 174 175 176 177 178 179 180
        when z' is exist    , clk = 1 : label = 1 + z';

)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OPERATOR(teacher_student_sigmoid_loss,
                  ops::TeacherStudentSigmoidLossOp,
                  ops::TeacherStudentSigmoidLossOpMaker,
H
Huihuang Zheng 已提交
181
                  ops::TeacherStudentSigmoidLossGradOpDescMaker);
H
heqiaozhi 已提交
182 183 184 185 186 187 188 189 190 191 192

REGISTER_OPERATOR(teacher_student_sigmoid_loss_grad,
                  ops::TeacherStudentSigmoidLossGradientOp);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss,
                       ops::TeacherStudentSigmoidLossOpKernel<float>,
                       ops::TeacherStudentSigmoidLossOpKernel<double>);

REGISTER_OP_CPU_KERNEL(teacher_student_sigmoid_loss_grad,
                       ops::TeacherStudentSigmoidLossGradOpKernel<float>,
                       ops::TeacherStudentSigmoidLossGradOpKernel<double>);