gru_unit_op.h 10.0 KB
Newer Older
G
guosheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

17
#include "paddle/operators/activation_op.h"
G
guosheng 已提交
18 19 20 21 22 23 24 25 26 27 28 29 30
#include "paddle/operators/math/math_function.h"

#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

31 32
enum GRUActivationType { identity = 0, sigmoid = 1, tanh = 2, relu = 3 };

G
guosheng 已提交
33
template <typename Place, typename T>
34
class GRUUnitKernel : public framework::OpKernel<T> {
G
guosheng 已提交
35
 public:
36 37 38 39 40 41 42 43 44 45 46 47 48 49
  template <typename Device, typename X, typename Y>
  void ActCompute(const int act_type, const Device& d, X x, Y y) const {
    if (act_type == identity)
      y.device(d) = x;
    else if (act_type == sigmoid)
      SigmoidFunctor<T>()(d, x, y);
    else if (act_type == tanh)
      TanhFunctor<T>()(d, x, y);
    else if (act_type == relu)
      ReluFunctor<T>()(d, x, y);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
50
  void Compute(const framework::ExecutionContext& context) const override {
51 52 53 54 55
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* bias = context.Input<Tensor>("Bias");
    auto* gate = context.Output<Tensor>("Gate");
G
guosheng 已提交
56
    gate->mutable_data<T>(context.GetPlace());
57
    auto* reset_hidden_prev = context.Output<Tensor>("ResetHiddenPrev");
G
guosheng 已提交
58
    reset_hidden_prev->mutable_data<T>(context.GetPlace());
59
    auto* hidden = context.Output<Tensor>("Hidden");
G
guosheng 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88
    hidden->mutable_data<T>(context.GetPlace());

    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

    auto x = EigenMatrix<T>::From(*input);
    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto b = EigenMatrix<T>::From(*bias);
    auto g = EigenMatrix<T>::From(*gate);
    auto r_h_p = EigenMatrix<T>::From(*reset_hidden_prev);
    auto h = EigenMatrix<T>::From(*hidden);
    auto place = context.GetEigenDevice<Place>();

    // calculate unactivated gate outputs
    g.device(place) = x +
                      b.reshape(Eigen::array<int, 2>({{1, frame_size * 3}}))
                          .broadcast(Eigen::array<int, 2>({{batch_size, 1}}));
    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
    T* gate_data = gate->data<T>();
    T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
    math::gemm<Place, T>(context.device_context(), false, false, batch_size,
                         2 * frame_size, frame_size, 1, hidden_prev_data,
                         frame_size, weight_data, frame_size * 2, 1, gate_data,
                         frame_size * 3);

    // calculate activited gate
    Eigen::array<int, 2> extents({{batch_size, frame_size}});
    Eigen::array<int, 2> u_offsets({{0, 0}});
89 90
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(u_offsets, extents), g.slice(u_offsets, extents));
G
guosheng 已提交
91 92
    auto u = g.slice(u_offsets, extents);  // update gate
    Eigen::array<int, 2> r_offsets({{0, frame_size}});
93 94
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(r_offsets, extents), g.slice(r_offsets, extents));
G
guosheng 已提交
95 96 97 98 99 100 101 102 103
    auto r = g.slice(r_offsets, extents);  // reset gate
    r_h_p.device(place) = r * h_p;         // reset previous hidden state
    math::gemm<Place, T>(context.device_context(), false, false, batch_size,
                         frame_size, frame_size, 1, reset_hidden_prev_data,
                         frame_size, weight_data + frame_size * frame_size * 2,
                         frame_size, 1, gate_data + frame_size * 2,
                         frame_size * 3);

    Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
104 105
    ActCompute(context.Attr<int>("activation"), place,
               g.slice(c_offsets, extents), g.slice(c_offsets, extents));
G
guosheng 已提交
106 107 108 109 110 111 112 113
    auto c = g.slice(c_offsets, extents);  // output candidate

    // calculate final output
    h.device(place) = u * (h_p - c) + c;
  }
};

template <typename Place, typename T>
114
class GRUUnitGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
115
 public:
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const int act_type, const Device& d, X x, Y y, DX dx,
                      DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == identity)
      dx.device(d) = dy;
    else if (act_type == sigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == tanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == relu)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
132
  void Compute(const framework::ExecutionContext& context) const override {
133 134 135 136 137 138 139
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* gate = context.Input<Tensor>("Gate");
    auto* reset_hidden_prev = context.Input<Tensor>("ResetHiddenPrev");
    auto* hidden_grad = context.Input<Tensor>(framework::GradVarName("Hidden"));
    auto* input_grad = context.Output<Tensor>(framework::GradVarName("Input"));
G
guosheng 已提交
140
    auto* hidden_prev_grad =
141
        context.Output<Tensor>(framework::GradVarName("HiddenPrev"));
G
guosheng 已提交
142
    auto* weight_grad =
143 144
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));
G
guosheng 已提交
145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
    input_grad->mutable_data<T>(context.GetPlace());
    hidden_prev_grad->mutable_data<T>(context.GetPlace());
    weight_grad->mutable_data<T>(context.GetPlace());
    bias_grad->mutable_data<T>(context.GetPlace());
    Tensor gate_grad;
    gate_grad.mutable_data<T>(input->dims(), context.GetPlace());
    Tensor reset_hidden_prev_grad;
    reset_hidden_prev_grad.mutable_data<T>(reset_hidden_prev->dims(),
                                           context.GetPlace());

    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

    const T* hidden_prev_data = hidden_prev->data<T>();
    T* hidden_prev_grad_data = hidden_prev_grad->data<T>();
    const T* weight_data = weight->data<T>();
    T* weight_grad_data = weight_grad->data<T>();
    T* gate_grad_data = gate_grad.data<T>();
    const T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
    T* reset_hidden_prev_grad_data = reset_hidden_prev_grad.data<T>();

    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto d_h = EigenMatrix<T>::From(*hidden_grad);
    auto d_x = EigenMatrix<T>::From(*input_grad);
    auto d_h_p = EigenMatrix<T>::From(*hidden_prev_grad);
    auto d_b = EigenMatrix<T>::From(*bias_grad);
    auto d_g = EigenMatrix<T>::From(gate_grad);
    auto d_r_h_p = EigenMatrix<T>::From(reset_hidden_prev_grad);
    auto place = context.GetEigenDevice<Place>();

    Eigen::array<int, 2> extents({{batch_size, frame_size}});
    Eigen::array<int, 2> u_offsets({{0, 0}});
    auto u = g.slice(u_offsets, extents);  // update gate
    Eigen::array<int, 2> r_offsets({{0, frame_size}});
    auto r = g.slice(r_offsets, extents);  // reset gate
    Eigen::array<int, 2> c_offsets({{0, frame_size * 2}});
    auto c = g.slice(c_offsets, extents);  // output candidate

    // backward for unactivated update gate
185 186
    ActGradCompute(context.Attr<int>("gate_activation"), place, u, u,
                   d_g.slice(u_offsets, extents), d_h * (h_p - c));
G
guosheng 已提交
187
    // backward for unactivated output candidate
188 189
    ActGradCompute(context.Attr<int>("activation"), place, c, c,
                   d_g.slice(c_offsets, extents), d_h * (u.constant(T(1)) - u));
G
guosheng 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202
    // backward for reset_hidden_prev
    math::gemm<Place, T>(context.device_context(), false, true, batch_size,
                         frame_size, frame_size, 1,
                         gate_grad_data + frame_size * 2, frame_size * 3,
                         weight_data + frame_size * frame_size * 2, frame_size,
                         0, reset_hidden_prev_grad_data, frame_size);
    // backward for state_weight
    math::gemm<Place, T>(
        context.device_context(), true, false, frame_size, frame_size,
        batch_size, 1, reset_hidden_prev_data, frame_size,
        gate_grad_data + frame_size * 2, frame_size * 3, 0,
        weight_grad_data + frame_size * frame_size * 2, frame_size);
    // backward for unactivated reset gate
203 204
    ActGradCompute(context.Attr<int>("gate_activation"), place, r, r,
                   d_g.slice(r_offsets, extents), d_r_h_p * h_p);
G
guosheng 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224
    // backward for update_gate_weight and reset_gate_weight
    math::gemm<Place, T>(context.device_context(), true, false, frame_size,
                         frame_size * 2, batch_size, 1, hidden_prev_data,
                         frame_size, gate_grad_data, frame_size * 3, 0,
                         weight_grad_data, frame_size * 2);
    // backward for hidden_prev
    d_h_p.device(place) = d_r_h_p * r + d_h * u;
    math::gemm<Place, T>(context.device_context(), false, true, batch_size,
                         frame_size, frame_size * 2, 1, gate_grad_data,
                         frame_size * 3, weight_data, frame_size * 2, 1,
                         hidden_prev_grad_data, frame_size);
    // backward for input
    d_x.device(place) = d_g;
    // backward for bias
    d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
  }
};

}  // namespace operators
}  // namespace paddle