main.cc 13.0 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <math.h>
#include <stdarg.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <algorithm>
#include <iostream>
#include <numeric>
#include <string>
#include <vector>

#include "include/config_parser.h"
#include "include/keypoint_detector.h"
#include "include/object_detector.h"
#include "include/preprocess_op.h"
#include "json/json.h"

Json::Value RT_Config;

void PrintBenchmarkLog(std::vector<double> det_time, int img_num) {
  std::cout << "----------------------- Config info -----------------------"
            << std::endl;
  std::cout << "num_threads: " << RT_Config["cpu_threads"].as<int>()
            << std::endl;
  std::cout << "----------------------- Data info -----------------------"
            << std::endl;
  std::cout << "batch_size_det: " << RT_Config["batch_size_det"].as<int>()
            << std::endl;
  std::cout << "batch_size_keypoint: "
            << RT_Config["batch_size_keypoint"].as<int>() << std::endl;
  std::cout << "----------------------- Model info -----------------------"
            << std::endl;
  RT_Config["model_dir_det"].as<std::string>().erase(
      RT_Config["model_dir_det"].as<std::string>().find_last_not_of("/") + 1);
  std::cout
      << "detection model_name: "
      << RT_Config["model_dir_det"].as<std::string>().substr(
             RT_Config["model_dir_det"].as<std::string>().find_last_of('/') + 1)
      << std::endl;
  RT_Config["model_dir_keypoint"].as<std::string>().erase(
      RT_Config["model_dir_keypoint"].as<std::string>().find_last_not_of("/") +
      1);
  std::cout
      << "keypoint model_name: "
      << RT_Config["model_dir_keypoint"].as<std::string>().substr(
             RT_Config["model_dir_keypoint"].as<std::string>().find_last_of(
                 '/') +
             1)
      << std::endl;
  std::cout << "----------------------- Perf info ------------------------"
            << std::endl;
  std::cout << "Total number of predicted data: " << img_num
            << " and total time spent(ms): "
            << std::accumulate(det_time.begin(), det_time.end(), 0)
            << std::endl;
  std::cout << "preproce_time(ms): " << det_time[0] / img_num
            << ", inference_time(ms): " << det_time[1] / img_num
            << ", postprocess_time(ms): " << det_time[2] / img_num << std::endl;
}

static std::string DirName(const std::string& filepath) {
  auto pos = filepath.rfind(OS_PATH_SEP);
  if (pos == std::string::npos) {
    return "";
  }
  return filepath.substr(0, pos);
}

static bool PathExists(const std::string& path) {
  struct stat buffer;
  return (stat(path.c_str(), &buffer) == 0);
}

static void MkDir(const std::string& path) {
  if (PathExists(path)) return;
  int ret = 0;
  ret = mkdir(path.c_str(), 0755);
  if (ret != 0) {
    std::string path_error(path);
    path_error += " mkdir failed!";
    throw std::runtime_error(path_error);
  }
}

static void MkDirs(const std::string& path) {
  if (path.empty()) return;
  if (PathExists(path)) return;

  MkDirs(DirName(path));
  MkDir(path);
}

void PredictImage(const std::vector<std::string> all_img_paths,
                  const int batch_size_det,
                  const double threshold_det,
                  const bool run_benchmark,
                  PaddleDetection::ObjectDetector* det,
                  PaddleDetection::KeyPointDetector* keypoint,
                  const std::string& output_dir = "output") {
  std::vector<double> det_t = {0, 0, 0};
  int steps = ceil(float(all_img_paths.size()) / batch_size_det);
  int kpts_imgs = 0;
  std::vector<double> keypoint_t = {0, 0, 0};
  for (int idx = 0; idx < steps; idx++) {
    std::vector<cv::Mat> batch_imgs;
    int left_image_cnt = all_img_paths.size() - idx * batch_size_det;
    if (left_image_cnt > batch_size_det) {
      left_image_cnt = batch_size_det;
    }
    for (int bs = 0; bs < left_image_cnt; bs++) {
      std::string image_file_path = all_img_paths.at(idx * batch_size_det + bs);
      cv::Mat im = cv::imread(image_file_path, 1);
      batch_imgs.insert(batch_imgs.end(), im);
    }
    // Store all detected result
    std::vector<PaddleDetection::ObjectResult> result;
    std::vector<int> bbox_num;
    std::vector<double> det_times;

    // Store keypoint results
    std::vector<PaddleDetection::KeyPointResult> result_kpts;
    std::vector<cv::Mat> imgs_kpts;
    std::vector<std::vector<float>> center_bs;
    std::vector<std::vector<float>> scale_bs;
    std::vector<int> colormap_kpts = PaddleDetection::GenerateColorMap(20);
    bool is_rbox = false;
    if (run_benchmark) {
      det->Predict(
          batch_imgs, threshold_det, 10, 10, &result, &bbox_num, &det_times);
    } else {
      det->Predict(batch_imgs, 0.5, 0, 1, &result, &bbox_num, &det_times);
    }
    // get labels and colormap
    auto labels = det->GetLabelList();
    auto colormap = PaddleDetection::GenerateColorMap(labels.size());
    int item_start_idx = 0;
    for (int i = 0; i < left_image_cnt; i++) {
      cv::Mat im = batch_imgs[i];
      std::vector<PaddleDetection::ObjectResult> im_result;
      int detect_num = 0;
      for (int j = 0; j < bbox_num[i]; j++) {
        PaddleDetection::ObjectResult item = result[item_start_idx + j];
        if (item.confidence < threshold_det || item.class_id == -1) {
          continue;
        }
        detect_num += 1;
        im_result.push_back(item);
        if (item.rect.size() > 6) {
          is_rbox = true;
          printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n",
                 item.class_id,
                 item.confidence,
                 item.rect[0],
                 item.rect[1],
                 item.rect[2],
                 item.rect[3],
                 item.rect[4],
                 item.rect[5],
                 item.rect[6],
                 item.rect[7]);
        } else {
          printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n",
                 item.class_id,
                 item.confidence,
                 item.rect[0],
                 item.rect[1],
                 item.rect[2],
                 item.rect[3]);
        }
      }
      std::cout << all_img_paths.at(idx * batch_size_det + i)
                << " The number of detected box: " << detect_num << std::endl;
      item_start_idx = item_start_idx + bbox_num[i];

      std::vector<int> compression_params;
      compression_params.push_back(cv::IMWRITE_JPEG_QUALITY);
      compression_params.push_back(95);
      std::string output_path(output_dir);
      if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) {
        output_path += OS_PATH_SEP;
      }
      std::string image_file_path = all_img_paths.at(idx * batch_size_det + i);
      if (keypoint) {
        int imsize = im_result.size();
        for (int i = 0; i < imsize; i++) {
          auto item = im_result[i];
          cv::Mat crop_img;
          std::vector<double> keypoint_times;
          std::vector<int> rect = {
              item.rect[0], item.rect[1], item.rect[2], item.rect[3]};
          std::vector<float> center;
          std::vector<float> scale;
          if (item.class_id == 0) {
            PaddleDetection::CropImg(im, crop_img, rect, center, scale);
            center_bs.emplace_back(center);
            scale_bs.emplace_back(scale);
            imgs_kpts.emplace_back(crop_img);
            kpts_imgs += 1;
          }

          if (imgs_kpts.size() == RT_Config["batch_size_keypoint"].as<int>() ||
              ((i == imsize - 1) && !imgs_kpts.empty())) {
            if (run_benchmark) {
              keypoint->Predict(imgs_kpts,
                                center_bs,
                                scale_bs,
                                0.5,
                                10,
                                10,
                                &result_kpts,
                                &keypoint_times);
            } else {
              keypoint->Predict(imgs_kpts,
                                center_bs,
                                scale_bs,
                                0.5,
                                0,
                                1,
                                &result_kpts,
                                &keypoint_times);
            }
            imgs_kpts.clear();
            center_bs.clear();
            scale_bs.clear();
            keypoint_t[0] += keypoint_times[0];
            keypoint_t[1] += keypoint_times[1];
            keypoint_t[2] += keypoint_times[2];
          }
        }
        std::string kpts_savepath =
            output_path + "keypoint_" +
            image_file_path.substr(image_file_path.find_last_of('/') + 1);
        cv::Mat kpts_vis_img =
            VisualizeKptsResult(im, result_kpts, colormap_kpts);
        cv::imwrite(kpts_savepath, kpts_vis_img, compression_params);
        printf("Visualized output saved as %s\n", kpts_savepath.c_str());
      } else {
        // Visualization result
        cv::Mat vis_img = PaddleDetection::VisualizeResult(
            im, im_result, labels, colormap, is_rbox);
        std::string det_savepath =
            output_path +
            image_file_path.substr(image_file_path.find_last_of('/') + 1);
        cv::imwrite(det_savepath, vis_img, compression_params);
        printf("Visualized output saved as %s\n", det_savepath.c_str());
      }
    }

    det_t[0] += det_times[0];
    det_t[1] += det_times[1];
    det_t[2] += det_times[2];
  }
  PrintBenchmarkLog(det_t, all_img_paths.size());
  PrintBenchmarkLog(keypoint_t, kpts_imgs);
}

int main(int argc, char** argv) {
  std::cout << "Usage: " << argv[0]
            << " [config_path](option) [image_dir](option)\n";
  std::string config_path = "runtime_config.json";
  std::string img_path = "";
  if (argc >= 2) {
    config_path = argv[1];
    if (argc >= 3) {
      img_path = argv[2];
    }
  }
  // Parsing command-line
  PaddleDetection::load_jsonf(config_path, RT_Config);
  if (RT_Config["model_dir_det"].as<std::string>().empty()) {
    std::cout << "Please set [model_det_dir] in " << config_path << std::endl;
    return -1;
  }
  if (RT_Config["image_file"].as<std::string>().empty() &&
      RT_Config["image_dir"].as<std::string>().empty() && img_path.empty()) {
    std::cout << "Please set [image_file] or [image_dir] in " << config_path
              << " Or use command: <" << argv[0] << " [image_dir]>"
              << std::endl;
    return -1;
  }
  if (!img_path.empty()) {
    std::cout << "Use image_dir in command line overide the path in config file"
              << std::endl;
    RT_Config["image_dir"] = img_path;
    RT_Config["image_file"] = "";
  }
  // Load model and create a object detector
  PaddleDetection::ObjectDetector det(
      RT_Config["model_dir_det"].as<std::string>(),
      RT_Config["cpu_threads"].as<int>(),
      RT_Config["batch_size_det"].as<int>());

  PaddleDetection::KeyPointDetector* keypoint = nullptr;
  if (!RT_Config["model_dir_keypoint"].as<std::string>().empty()) {
    keypoint = new PaddleDetection::KeyPointDetector(
        RT_Config["model_dir_keypoint"].as<std::string>(),
        RT_Config["cpu_threads"].as<int>(),
Z
zhiboniu 已提交
311 312
        RT_Config["batch_size_keypoint"].as<int>(),
        RT_Config["use_dark_decode"].as<bool>());
Z
zhiboniu 已提交
313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
    RT_Config["batch_size_det"] = 1;
    printf(
        "batchsize of detection forced to be 1 while keypoint model is not "
        "empty()");
  }
  // Do inference on input image

  if (!RT_Config["image_file"].as<std::string>().empty() ||
      !RT_Config["image_dir"].as<std::string>().empty()) {
    if (!PathExists(RT_Config["output_dir"].as<std::string>())) {
      MkDirs(RT_Config["output_dir"].as<std::string>());
    }
    std::vector<std::string> all_img_paths;
    std::vector<cv::String> cv_all_img_paths;
    if (!RT_Config["image_file"].as<std::string>().empty()) {
      all_img_paths.push_back(RT_Config["image_file"].as<std::string>());
      if (RT_Config["batch_size_det"].as<int>() > 1) {
        std::cout << "batch_size_det should be 1, when set `image_file`."
                  << std::endl;
        return -1;
      }
    } else {
      cv::glob(RT_Config["image_dir"].as<std::string>(), cv_all_img_paths);
      for (const auto& img_path : cv_all_img_paths) {
        all_img_paths.push_back(img_path);
      }
    }
    PredictImage(all_img_paths,
                 RT_Config["batch_size_det"].as<int>(),
                 RT_Config["threshold_det"].as<float>(),
                 RT_Config["run_benchmark"].as<bool>(),
                 &det,
                 keypoint,
                 RT_Config["output_dir"].as<std::string>());
  }
  delete keypoint;
  keypoint = nullptr;
  return 0;
}