keypoint_detector.cc 8.0 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
//   Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <sstream>
// for setprecision
#include <chrono>
#include <iomanip>
#include "include/keypoint_detector.h"

namespace PaddleDetection {

// Load Model and create model predictor
void KeyPointDetector::LoadModel(std::string model_file, int num_theads) {
  MobileConfig config;
  config.set_threads(num_theads);
  config.set_model_from_file(model_file + "/model.nb");
  config.set_power_mode(LITE_POWER_HIGH);

  predictor_ = std::move(CreatePaddlePredictor<MobileConfig>(config));
}

Z
zhiboniu 已提交
32 33 34 35 36
// Visualiztion MaskDetector results
cv::Mat VisualizeKptsResult(const cv::Mat& img,
                            const std::vector<KeyPointResult>& results,
                            const std::vector<int>& colormap) {
  const int edge[][2] = {{0, 1},
Z
zhiboniu 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
                       {0, 2},
                       {1, 3},
                       {2, 4},
                       {3, 5},
                       {4, 6},
                       {5, 7},
                       {6, 8},
                       {7, 9},
                       {8, 10},
                       {5, 11},
                       {6, 12},
                       {11, 13},
                       {12, 14},
                       {13, 15},
                       {14, 16},
                       {11, 12}};
  cv::Mat vis_img = img.clone();
  for (int batchid = 0; batchid < results.size(); batchid++) {
    for (int i = 0; i < results[batchid].num_joints; i++) {
      if (results[batchid].keypoints[i * 3] > 0.5) {
        int x_coord = int(results[batchid].keypoints[i * 3 + 1]);
        int y_coord = int(results[batchid].keypoints[i * 3 + 2]);
        cv::circle(vis_img,
                   cv::Point2d(x_coord, y_coord),
                   1,
                   cv::Scalar(0, 0, 255),
                   2);
      }
    }
    for (int i = 0; i < results[batchid].num_joints; i++) {
      int x_start = int(results[batchid].keypoints[edge[i][0] * 3 + 1]);
      int y_start = int(results[batchid].keypoints[edge[i][0] * 3 + 2]);
      int x_end = int(results[batchid].keypoints[edge[i][1] * 3 + 1]);
      int y_end = int(results[batchid].keypoints[edge[i][1] * 3 + 2]);
      cv::line(vis_img,
               cv::Point2d(x_start, y_start),
               cv::Point2d(x_end, y_end),
               colormap[i],
               1);
    }
  }
  return vis_img;
}

void KeyPointDetector::Preprocess(const cv::Mat& ori_im) {
  // Clone the image : keep the original mat for postprocess
  cv::Mat im = ori_im.clone();
  cv::cvtColor(im, im, cv::COLOR_BGR2RGB);
  preprocessor_.Run(&im, &inputs_);
}

Z
zhiboniu 已提交
88 89 90 91
void KeyPointDetector::Postprocess(std::vector<float>& output,
                                   std::vector<int64_t>& output_shape,
                                   std::vector<int64_t>& idxout,
                                   std::vector<int64_t>& idx_shape,
Z
zhiboniu 已提交
92 93 94
                                   std::vector<KeyPointResult>* result,
                                   std::vector<std::vector<float>>& center_bs,
                                   std::vector<std::vector<float>>& scale_bs) {
Z
zhiboniu 已提交
95
  std::vector<float> preds(output_shape[1] * 3, 0);
Z
zhiboniu 已提交
96 97

  for (int batchid = 0; batchid < output_shape[0]; batchid++) {
Z
zhiboniu 已提交
98
    get_final_preds(output,
Z
zhiboniu 已提交
99
                    output_shape,
Z
zhiboniu 已提交
100
                    idxout,
Z
zhiboniu 已提交
101 102 103 104
                    idx_shape,
                    center_bs[batchid],
                    scale_bs[batchid],
                    preds,
Z
zhiboniu 已提交
105 106
                    batchid,
                    this->use_dark());
Z
zhiboniu 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    KeyPointResult result_item;
    result_item.num_joints = output_shape[1];
    result_item.keypoints.clear();
    for (int i = 0; i < output_shape[1]; i++) {
      result_item.keypoints.emplace_back(preds[i * 3]);
      result_item.keypoints.emplace_back(preds[i * 3 + 1]);
      result_item.keypoints.emplace_back(preds[i * 3 + 2]);
    }
    result->push_back(result_item);
  }
}

void KeyPointDetector::Predict(const std::vector<cv::Mat> imgs,
                               std::vector<std::vector<float>>& center_bs,
                               std::vector<std::vector<float>>& scale_bs,
                               const double threshold,
                               const int warmup,
                               const int repeats,
                               std::vector<KeyPointResult>* result,
                               std::vector<double>* times) {
  auto preprocess_start = std::chrono::steady_clock::now();
  int batch_size = imgs.size();

  // in_data_batch
  std::vector<float> in_data_all;

  // Preprocess image
  for (int bs_idx = 0; bs_idx < batch_size; bs_idx++) {
    cv::Mat im = imgs.at(bs_idx);
    Preprocess(im);

    // TODO: reduce cost time
    in_data_all.insert(
        in_data_all.end(), inputs_.im_data_.begin(), inputs_.im_data_.end());
  }

  // Prepare input tensor

  auto input_names = predictor_->GetInputNames();
  for (const auto& tensor_name : input_names) {
    auto in_tensor = predictor_->GetInputByName(tensor_name);
    if (tensor_name == "image") {
      int rh = inputs_.in_net_shape_[0];
      int rw = inputs_.in_net_shape_[1];
      in_tensor->Resize({batch_size, 3, rh, rw});
      auto* inptr = in_tensor->mutable_data<float>();
      std::copy_n(in_data_all.data(), in_data_all.size(), inptr);
    }
  }

  auto preprocess_end = std::chrono::steady_clock::now();
  std::vector<int64_t> output_shape, idx_shape;
  // Run predictor
  // warmup
  for (int i = 0; i < warmup; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetTensor(output_names[0]);
    auto idx_tensor = predictor_->GetTensor(output_names[1]);
  }

  auto inference_start = std::chrono::steady_clock::now();
  for (int i = 0; i < repeats; i++) {
    predictor_->Run();
    // Get output tensor
    auto output_names = predictor_->GetOutputNames();
    auto out_tensor = predictor_->GetTensor(output_names[0]);
    output_shape = out_tensor->shape();
    // Calculate output length
    int output_size = 1;
    for (int j = 0; j < output_shape.size(); ++j) {
      output_size *= output_shape[j];
    }
    if (output_size < 6) {
      std::cerr << "[WARNING] No object detected." << std::endl;
    }
    output_data_.resize(output_size);
    std::copy_n(
        out_tensor->mutable_data<float>(), output_size, output_data_.data());

    auto idx_tensor = predictor_->GetTensor(output_names[1]);
    idx_shape = idx_tensor->shape();
    // Calculate output length
    output_size = 1;
    for (int j = 0; j < idx_shape.size(); ++j) {
      output_size *= idx_shape[j];
    }
    idx_data_.resize(output_size);
    std::copy_n(
        idx_tensor->mutable_data<int64_t>(), output_size, idx_data_.data());
  }
  auto inference_end = std::chrono::steady_clock::now();
  auto postprocess_start = std::chrono::steady_clock::now();
  // Postprocessing result
  Postprocess(output_data_,
              output_shape,
              idx_data_,
              idx_shape,
              result,
              center_bs,
              scale_bs);
  auto postprocess_end = std::chrono::steady_clock::now();

  std::chrono::duration<float> preprocess_diff =
      preprocess_end - preprocess_start;
  times->push_back(double(preprocess_diff.count() * 1000));
  std::chrono::duration<float> inference_diff = inference_end - inference_start;
  times->push_back(double(inference_diff.count() / repeats * 1000));
  std::chrono::duration<float> postprocess_diff =
      postprocess_end - postprocess_start;
  times->push_back(double(postprocess_diff.count() * 1000));
}

}  // namespace PaddleDetection