DetAnnoTools_en.md 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271
[简体中文](DetAnnoTools.md) | English



# Object Detection Annotation Tools

## Concents

[LabelMe](#LabelMe)

* [Instruction](#Instruction-of-LabelMe)
  * [Installation](#Installation)
  * [Annotation of Images](#Annotation-of-images-in-LabelMe)
* [Annotation Format](#Annotation-Format-of-LabelMe)
  * [Export Format](#Export-Format-of-LabelMe)
  * [Summary of Format Conversion](#Summary-of-Format-Conversion)
  * [Annotation file(json)—>VOC Dataset](#annotation-filejsonvoc-dataset)
  * [Annotation file(json)—>COCO Dataset](#annotation-filejsoncoco-dataset)

[LabelImg](#LabelImg)

* [Instruction](#Instruction-of-LabelImg)
  * [Installation](#Installation-of-LabelImg)
  * [Installation Notes](#Installation-Notes)
  * [Annotation of images](#Annotation-of-images-in-LabelImg)
* [Annotation Format](#Annotation-Format-of-LabelImg)
  * [Export Format](#Export-Format-of-LabelImg)
  * [Notes of Format Conversion](#Notes-of-Format-Conversion)



## [LabelMe](https://github.com/wkentaro/labelme)

### Instruction of LabelMe

#### Installation

Please refer to [The github of LabelMe](https://github.com/wkentaro/labelme) for installation details.

<details>
<summary><b> Ubuntu</b></summary>

```
sudo apt-get install labelme

# or
sudo pip3 install labelme

# or install standalone executable from:
# https://github.com/wkentaro/labelme/releases
```

</details>

<details>
<summary><b> macOS</b></summary>

```
brew install pyqt  # maybe pyqt5
pip install labelme

# or
brew install wkentaro/labelme/labelme  # command line interface
# brew install --cask wkentaro/labelme/labelme  # app

# or install standalone executable/app from:
# https://github.com/wkentaro/labelme/releases
```

</details>



We recommend installing by Anoncanda.

```
conda create –name=labelme python=3
conda activate labelme
pip install pyqt5
pip install labelme
```





#### Annotation of Images in LabelMe

After starting labelme, select an image or an folder with images.

Select  `create polygons`   in the formula bar. Draw an annotation area as shown in the following  GIF. You can right-click on the image to select different shape. When finished, press the Enter/Return key, then fill the corresponding label in the popup box, such as, people.

Click the save button in the formula bar,it will generate an annotation file in json.

![](https://media3.giphy.com/media/XdnHZgge5eynRK3ATK/giphy.gif?cid=790b7611192e4c0ec2b5e6990b6b0f65623154ffda66b122&rid=giphy.gif&ct=g)



### Annotation Format of LabelMe

#### Export Format of LabelMe

```
#generate an annotation file
png/jpeg/jpg-->labelme-->json
```





#### Summary of Format Conversion

```
#convert annotation file to VOC dataset format
json-->labelme2voc.py-->VOC dataset

#convert annotation file to COCO dataset format
json-->labelme2coco.py-->COCO dataset
```





#### Annotation file(json)—>VOC Dataset

Use this script [labelme2voc.py](https://github.com/wkentaro/labelme/blob/main/examples/bbox_detection/labelme2voc.py) in command line.

```Te
python labelme2voc.py data_annotated(annotation folder) data_dataset_voc(output folder) --labels labels.txt
```

Then, it will generate following contents: 

```
# It generates:
#   - data_dataset_voc/JPEGImages
#   - data_dataset_voc/Annotations
#   - data_dataset_voc/AnnotationsVisualization

```





#### Annotation file(json)—>COCO Dataset

Convert the data annotated by LabelMe to COCO dataset by the script [x2coco.py](https://github.com/PaddlePaddle/PaddleDetection/blob/develop/tools/x2coco.py) provided by PaddleDetection.

```bash
python tools/x2coco.py \
                --dataset_type labelme \
                --json_input_dir ./labelme_annos/ \
                --image_input_dir ./labelme_imgs/ \
                --output_dir ./cocome/ \
                --train_proportion 0.8 \
                --val_proportion 0.2 \
                --test_proportion 0.0
```

After the user dataset is converted to COCO data, the directory structure is as follows (Try to avoid use Chinese for the path name in case of errors caused by Chinese coding problems):

```
dataset/xxx/
├── annotations
│   ├── train.json  # Annotation file of coco data
│   ├── valid.json  # Annotation file of coco data
├── images
│   ├── xxx1.jpg
│   ├── xxx2.jpg
│   ├── xxx3.jpg
│   |   ...
...
```





## [LabelImg](https://github.com/tzutalin/labelImg)

### Instruction

#### Installation of LabelImg

Please refer to [The github of LabelImg](https://github.com/tzutalin/labelImg) for installation details.

<details>
<summary><b> Ubuntu</b></summary>

```
sudo apt-get install pyqt5-dev-tools
sudo pip3 install -r requirements/requirements-linux-python3.txt
make qt5py3
python3 labelImg.py
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
```

</details>

<details>
<summary><b>macOS</b></summary>

```
brew install qt  # Install qt-5.x.x by Homebrew
brew install libxml2

or using pip

pip3 install pyqt5 lxml # Install qt and lxml by pip

make qt5py3
python3 labelImg.py
python3 labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
```

</details>



We recommend installing by Anoncanda.

Download and go to the folder of  [labelImg](https://github.com/tzutalin/labelImg#labelimg)

```
conda install pyqt=5
conda install -c anaconda lxml
pyrcc5 -o libs/resources.py resources.qrc
python labelImg.py
python labelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]
```





#### Installation Notes

Use python scripts to startup LabelImg: `python labelImg.py <IMAGE_PATH>`

#### Annotation of images in LabelImg

After the startup of LabelImg, select an image or a folder with images.

Select  `Create RectBox`  in the formula bar. Draw an annotation area as shown in the following  GIF. When finished, select corresponding label in the popup box. Then save the annotated file in three forms:  VOC/YOLO/CreateML.



![](https://user-images.githubusercontent.com/34162360/177526022-fd9c63d8-e476-4b63-ae02-76d032bb7656.gif)





### Annotation Format of LabelImg

#### Export Format of LabelImg

```
#generate annotation files
png/jpeg/jpg-->labelImg-->xml/txt/json
```



#### Notes of Format Conversion

**PaddleDetection supports the format of VOC or COCO.** The annotation file generated by LabelImg needs to be converted by VOC or COCO.  You can refer to [PrepareDataSet](./PrepareDataSet.md#%E5%87%86%E5%A4%87%E8%AE%AD%E7%BB%83%E6%95%B0%E6%8D%AE).