trainer.py 6.4 KB
Newer Older
Y
Yu Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
import collections
from paddle.proto.ModelConfig_pb2 import ModelConfig
import paddle.v2.parameters
import paddle.v2.optimizer
import py_paddle.swig_paddle as api
from py_paddle import DataProviderConverter

__all__ = ['ITrainer', 'SGDTrainer', 'CompleteTrainOneBatch', 'BaseEvent']


class BaseEvent(object):
    """
    Just a marker class
    """
    pass


class CompleteTrainOneBatch(BaseEvent):
Y
Yu Yang 已提交
19 20 21 22
    """
    Event On One Batch Training Complete.
    """

Y
Yu Yang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
    def __init__(self, pass_id, batch_id, cost):
        self.pass_id = pass_id
        self.batch_id = batch_id
        self.cost = cost


def default_event_handler(event):
    pass


class ITrainer(object):
    def train(self,
              train_data_reader,
              topology,
              parameters,
              test_data_reader=None,
              event_handler=None):
        raise NotImplementedError()


class SGDTrainer(ITrainer):
    def __init__(self, update_equation):
Y
Yu Yang 已提交
45 46 47 48 49
        """
        Simple SGD Trainer.

        :param update_equation: Maybe we should give a DSL for update equation?
        """
Y
Yu Yang 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63
        if not isinstance(update_equation, paddle.v2.optimizer.Optimizer):
            raise ValueError()

        self.__optimizer__ = update_equation

    def train(self,
              train_data_reader,
              topology,
              parameters,
              num_passes=1,
              test_data_reader=None,
              event_handler=None,
              batch_size=32,
              data_types=None):
Y
Yu Yang 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
        """
        Training method. Will train num_passes of input data.

        :param train_data_reader:
        :param topology: Network Topology, a protobuf ModelConfig message.
        :param parameters: The parameter pools.
        :param num_passes: The total train passes.
        :param test_data_reader:
        :param event_handler: Event handler. A method will be invoked when event
                              occurred.
        :type event_handler: (BaseEvent) => None
        :param batch_size: Not important, will be removed after data refactor.
        :param data_types: Not important, will be removed after data refactor.
        :return:
        """
Y
Yu Yang 已提交
79 80 81 82 83 84 85 86 87 88 89 90 91 92
        if event_handler is None:
            event_handler = default_event_handler

        __check_train_args__(**locals())

        gm = api.GradientMachine.createFromConfigProto(
            topology, api.CREATE_MODE_NORMAL, self.__optimizer__.enable_types())
        assert isinstance(gm, api.GradientMachine)
        __copy_parameter_from_pool__(gm, parameters)

        updater = self.__optimizer__.create_local_updater()
        assert isinstance(updater, api.ParameterUpdater)
        updater.init(gm)

Y
Yu Yang 已提交
93 94 95
        gm.start()
        out_args = api.Arguments.createArguments(0)

Y
Yu Yang 已提交
96 97 98 99 100 101 102 103 104 105 106
        data_types_lists = []
        for each in topology.input_layer_names:
            if each not in data_types:
                raise ValueError()
            data_types_lists.append(data_types[each])

        converter = DataProviderConverter(input_types=data_types_lists)

        for pass_id in xrange(num_passes):
            updater.startPass()
            for batch_id, data_batch in enumerate(
Y
Yu Yang 已提交
107 108
                    __data_reader_to_batch__(train_data_reader, batch_size,
                                             topology)):
Y
Yu Yang 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                pass_type = updater.startBatch(len(data_batch))
                gm.forwardBackward(converter(data_batch), out_args, pass_type)
                for each_param in gm.getParameters():
                    updater.update(each_param)
                # Get cost. We use numpy to calculate total cost for this batch.
                cost_vec = out_args.getSlotValue(0)
                cost_vec = cost_vec.copyToNumpyMat()
                cost = cost_vec.sum() / len(data_batch)
                updater.finishBatch(cost)

                event_handler(
                    CompleteTrainOneBatch(
                        pass_id=pass_id, batch_id=batch_id, cost=cost))

            updater.finishPass()
        gm.finish()


Y
Yu Yang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
def __data_reader_to_batch__(reader, batch_size, topology):
    """
    This function is not important, and will be removed when data refactored.
    """

    def input_reorder(func):
        for item in func():
            retv = []
            for __layer_name__ in topology.input_layer_names:
                retv.append(item[__layer_name__])
            yield retv

    return __generator_to_batch__(input_reorder(reader), batch_size=batch_size)


Y
Yu Yang 已提交
142
def __generator_to_batch__(generator, batch_size):
Y
Yu Yang 已提交
143 144 145
    """
    This function is not important, and will be removed when data refactored.
    """
Y
Yu Yang 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175
    ret_val = list()
    for each_item in generator:
        ret_val.append(each_item)
        if len(ret_val) == batch_size:
            yield ret_val
            ret_val = list()
    if len(ret_val) != 0:
        yield ret_val


def __copy_parameter_from_pool__(gm, pool):
    """

    :param gm:
    :type gm: api.GradientMachine
    :param pool:
    :type pool: paddle.v2.parameters.IParameterPool
    :return:
    """
    assert isinstance(pool, paddle.v2.parameters.IParameterPool)
    for each_param in gm.getParameters():
        name = each_param.getName()
        param = pool.get_parameter(name,
                                   paddle.v2.parameters.ParameterFlag.READ_ONLY)
        each_param.getBuf(api.PARAMETER_VALUE).copyFromNumpyArray(param.flatten(
        ).astype('float32'))


def __check_train_args__(train_data_reader, topology, parameters,
                         test_data_reader, event_handler, **kwargs):
Y
Yu Yang 已提交
176 177 178
    """
    Check train function's argument types
    """
Y
Yu Yang 已提交
179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
    if not callable(train_data_reader) or not isinstance(train_data_reader(),
                                                         collections.Iterator):
        raise ValueError('train_data_reader should be a function, '
                         'which can return a iterator')

    if test_data_reader is not None:
        if not callable(test_data_reader) or not isinstance(
                test_data_reader(), collections.Iterator):
            raise ValueError('test_data_reader should be a function, which can '
                             'return a iterator')

    if not isinstance(topology, ModelConfig):
        raise ValueError('topology should be a model config')

    if not isinstance(parameters, paddle.v2.parameters.IParameterPool):
        raise ValueError('parameters should be a parameter pool')

    if not callable(event_handler):
        raise ValueError('event handler should be a function')