generate_proposals_op.cu 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yu Yang 已提交
15
#include <paddle/fluid/memory/allocation/allocator.h>
16 17 18 19
#include <stdio.h>
#include <string>
#include <vector>
#include "cub/cub.cuh"
20
#include "paddle/fluid/framework/mixed_vector.h"
21 22
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/memory/memory.h"
23
#include "paddle/fluid/operators/detail/safe_ref.h"
24 25
#include "paddle/fluid/operators/gather.cu.h"
#include "paddle/fluid/operators/math/math_function.h"
26
#include "paddle/fluid/platform/for_range.h"
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
using LoDTensor = framework::LoDTensor;

namespace {

#define DIVUP(m, n) ((m) / (n) + ((m) % (n) > 0))
#define CUDA_1D_KERNEL_LOOP(i, n)                              \
  for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \
       i += blockDim.x * gridDim.x)

int const kThreadsPerBlock = sizeof(uint64_t) * 8;

43 44 45 46 47 48 49 50
static const double kBBoxClipDefault = std::log(1000.0 / 16.0);

struct RangeInitFunctor {
  int start_;
  int delta_;
  int *out_;
  __device__ void operator()(size_t i) { out_[i] = start_ + i * delta_; }
};
51 52

template <typename T>
53 54 55 56
static void SortDescending(const platform::CUDADeviceContext &ctx,
                           const Tensor &value, Tensor *value_out,
                           Tensor *index_out) {
  int num = static_cast<int>(value.numel());
57 58
  Tensor index_in_t;
  int *idx_in = index_in_t.mutable_data<int>({num}, ctx.GetPlace());
59 60 61
  platform::ForRange<platform::CUDADeviceContext> for_range(ctx, num);
  for_range(RangeInitFunctor{0, 1, idx_in});

62 63 64 65 66 67 68 69
  int *idx_out = index_out->mutable_data<int>({num}, ctx.GetPlace());

  const T *keys_in = value.data<T>();
  T *keys_out = value_out->mutable_data<T>({num}, ctx.GetPlace());

  // Determine temporary device storage requirements
  size_t temp_storage_bytes = 0;
  cub::DeviceRadixSort::SortPairsDescending<T, int>(
70
      nullptr, temp_storage_bytes, keys_in, keys_out, idx_in, idx_out, num);
71 72
  // Allocate temporary storage
  auto place = boost::get<platform::CUDAPlace>(ctx.GetPlace());
73
  auto d_temp_storage =
Y
Yu Yang 已提交
74
      memory::Alloc(place, temp_storage_bytes, memory::Allocator::kScratchpad);
75 76 77

  // Run sorting operation
  cub::DeviceRadixSort::SortPairsDescending<T, int>(
78 79
      d_temp_storage->ptr(), temp_storage_bytes, keys_in, keys_out, idx_in,
      idx_out, num);
80 81 82
}

template <typename T>
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
struct BoxDecodeAndClipFunctor {
  const T *anchor;
  const T *deltas;
  const T *var;
  const int *index;
  const T *im_info;

  T *proposals;

  BoxDecodeAndClipFunctor(const T *anchor, const T *deltas, const T *var,
                          const int *index, const T *im_info, T *proposals)
      : anchor(anchor),
        deltas(deltas),
        var(var),
        index(index),
        im_info(im_info),
        proposals(proposals) {}

  T bbox_clip_default{static_cast<T>(kBBoxClipDefault)};

  __device__ void operator()(size_t i) {
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    int k = index[i] * 4;
    T axmin = anchor[k];
    T aymin = anchor[k + 1];
    T axmax = anchor[k + 2];
    T aymax = anchor[k + 3];

    T w = axmax - axmin + 1.0;
    T h = aymax - aymin + 1.0;
    T cx = axmin + 0.5 * w;
    T cy = aymin + 0.5 * h;

    T dxmin = deltas[k];
    T dymin = deltas[k + 1];
    T dxmax = deltas[k + 2];
    T dymax = deltas[k + 3];

120
    T d_cx, d_cy, d_w, d_h;
121 122 123
    if (var) {
      d_cx = cx + dxmin * w * var[k];
      d_cy = cy + dymin * h * var[k + 1];
124 125
      d_w = exp(Min(dxmax * var[k + 2], bbox_clip_default)) * w;
      d_h = exp(Min(dymax * var[k + 3], bbox_clip_default)) * h;
126 127 128
    } else {
      d_cx = cx + dxmin * w;
      d_cy = cy + dymin * h;
129 130
      d_w = exp(Min(dxmax, bbox_clip_default)) * w;
      d_h = exp(Min(dymax, bbox_clip_default)) * h;
131 132 133 134 135 136 137
    }

    T oxmin = d_cx - d_w * 0.5;
    T oymin = d_cy - d_h * 0.5;
    T oxmax = d_cx + d_w * 0.5 - 1.;
    T oymax = d_cy + d_h * 0.5 - 1.;

138 139 140 141
    proposals[i * 4] = Max(Min(oxmin, im_info[1] - 1.), 0.);
    proposals[i * 4 + 1] = Max(Min(oymin, im_info[0] - 1.), 0.);
    proposals[i * 4 + 2] = Max(Min(oxmax, im_info[1] - 1.), 0.);
    proposals[i * 4 + 3] = Max(Min(oymax, im_info[0] - 1.), 0.);
142
  }
143 144 145 146 147

  __device__ __forceinline__ T Min(T a, T b) const { return a > b ? b : a; }

  __device__ __forceinline__ T Max(T a, T b) const { return a > b ? a : b; }
};
148 149

template <typename T, int BlockSize>
150 151 152
static __global__ void FilterBBoxes(const T *bboxes, const T *im_info,
                                    const T min_size, const int num,
                                    int *keep_num, int *keep) {
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196
  T im_h = im_info[0];
  T im_w = im_info[1];
  T im_scale = im_info[2];

  int cnt = 0;
  __shared__ int keep_index[BlockSize];

  CUDA_1D_KERNEL_LOOP(i, num) {
    keep_index[threadIdx.x] = -1;
    __syncthreads();

    int k = i * 4;
    T xmin = bboxes[k];
    T ymin = bboxes[k + 1];
    T xmax = bboxes[k + 2];
    T ymax = bboxes[k + 3];

    T w = xmax - xmin + 1.0;
    T h = ymax - ymin + 1.0;
    T cx = xmin + w / 2.;
    T cy = ymin + h / 2.;

    T w_s = (xmax - xmin) / im_scale + 1.;
    T h_s = (ymax - ymin) / im_scale + 1.;

    if (w_s >= min_size && h_s >= min_size && cx <= im_w && cy <= im_h) {
      keep_index[threadIdx.x] = i;
    }
    __syncthreads();
    if (threadIdx.x == 0) {
      int size = (num - i) < BlockSize ? num - i : BlockSize;
      for (int j = 0; j < size; ++j) {
        if (keep_index[j] > -1) {
          keep[cnt++] = keep_index[j];
        }
      }
    }
    __syncthreads();
  }
  if (threadIdx.x == 0) {
    keep_num[0] = cnt;
  }
}

197
static __device__ inline float IoU(const float *a, const float *b) {
198 199 200 201 202 203 204 205 206
  float left = max(a[0], b[0]), right = min(a[2], b[2]);
  float top = max(a[1], b[1]), bottom = min(a[3], b[3]);
  float width = max(right - left + 1, 0.f), height = max(bottom - top + 1, 0.f);
  float inter_s = width * height;
  float s_a = (a[2] - a[0] + 1) * (a[3] - a[1] + 1);
  float s_b = (b[2] - b[0] + 1) * (b[3] - b[1] + 1);
  return inter_s / (s_a + s_b - inter_s);
}

207 208 209
static __global__ void NMSKernel(const int n_boxes,
                                 const float nms_overlap_thresh,
                                 const float *dev_boxes, uint64_t *dev_mask) {
210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
  const int row_start = blockIdx.y;
  const int col_start = blockIdx.x;

  const int row_size =
      min(n_boxes - row_start * kThreadsPerBlock, kThreadsPerBlock);
  const int col_size =
      min(n_boxes - col_start * kThreadsPerBlock, kThreadsPerBlock);

  __shared__ float block_boxes[kThreadsPerBlock * 4];
  if (threadIdx.x < col_size) {
    block_boxes[threadIdx.x * 4 + 0] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 0];
    block_boxes[threadIdx.x * 4 + 1] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 1];
    block_boxes[threadIdx.x * 4 + 2] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 2];
    block_boxes[threadIdx.x * 4 + 3] =
        dev_boxes[(kThreadsPerBlock * col_start + threadIdx.x) * 4 + 3];
  }
  __syncthreads();

  if (threadIdx.x < row_size) {
    const int cur_box_idx = kThreadsPerBlock * row_start + threadIdx.x;
    const float *cur_box = dev_boxes + cur_box_idx * 4;
    int i = 0;
    uint64_t t = 0;
    int start = 0;
    if (row_start == col_start) {
      start = threadIdx.x + 1;
    }
    for (i = start; i < col_size; i++) {
      if (IoU(cur_box, block_boxes + i * 4) > nms_overlap_thresh) {
        t |= 1ULL << i;
      }
    }
    const int col_blocks = DIVUP(n_boxes, kThreadsPerBlock);
    dev_mask[cur_box_idx * col_blocks + col_start] = t;
  }
}

template <typename T>
251 252 253
static void NMS(const platform::CUDADeviceContext &ctx, const Tensor &proposals,
                const Tensor &sorted_indices, const T nms_threshold,
                Tensor *keep_out) {
254 255 256 257 258 259 260 261 262 263
  int boxes_num = proposals.dims()[0];
  PADDLE_ENFORCE_EQ(boxes_num, sorted_indices.dims()[0]);

  const int col_blocks = DIVUP(boxes_num, kThreadsPerBlock);
  dim3 blocks(DIVUP(boxes_num, kThreadsPerBlock),
              DIVUP(boxes_num, kThreadsPerBlock));
  dim3 threads(kThreadsPerBlock);

  const T *boxes = proposals.data<T>();
  auto place = boost::get<platform::CUDAPlace>(ctx.GetPlace());
264 265 266 267
  framework::Vector<uint64_t> mask(boxes_num * col_blocks);
  NMSKernel<<<blocks, threads>>>(
      boxes_num, nms_threshold, boxes,
      mask.CUDAMutableData(boost::get<platform::CUDAPlace>(ctx.GetPlace())));
268 269 270 271 272 273 274 275 276 277 278 279 280

  std::vector<uint64_t> remv(col_blocks);
  memset(&remv[0], 0, sizeof(uint64_t) * col_blocks);

  std::vector<int> keep_vec;
  int num_to_keep = 0;
  for (int i = 0; i < boxes_num; i++) {
    int nblock = i / kThreadsPerBlock;
    int inblock = i % kThreadsPerBlock;

    if (!(remv[nblock] & (1ULL << inblock))) {
      ++num_to_keep;
      keep_vec.push_back(i);
281
      uint64_t *p = &mask[0] + i * col_blocks;
282 283 284 285 286 287 288 289 290 291 292
      for (int j = nblock; j < col_blocks; j++) {
        remv[j] |= p[j];
      }
    }
  }
  int *keep = keep_out->mutable_data<int>({num_to_keep}, ctx.GetPlace());
  memory::Copy(place, keep, platform::CPUPlace(), keep_vec.data(),
               sizeof(int) * num_to_keep, 0);
}

template <typename T>
293
static std::pair<Tensor, Tensor> ProposalForOneImage(
294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311
    const platform::CUDADeviceContext &ctx, const Tensor &im_info,
    const Tensor &anchors, const Tensor &variances,
    const Tensor &bbox_deltas,  // [M, 4]
    const Tensor &scores,       // [N, 1]
    int pre_nms_top_n, int post_nms_top_n, float nms_thresh, float min_size,
    float eta) {
  // 1. pre nms
  Tensor scores_sort, index_sort;
  SortDescending<T>(ctx, scores, &scores_sort, &index_sort);
  int num = scores.numel();
  int pre_nms_num = (pre_nms_top_n <= 0 || pre_nms_top_n > num) ? scores.numel()
                                                                : pre_nms_top_n;
  scores_sort.Resize({pre_nms_num, 1});
  index_sort.Resize({pre_nms_num, 1});

  // 2. box decode and clipping
  Tensor proposals;
  proposals.mutable_data<T>({pre_nms_num, 4}, ctx.GetPlace());
312 313 314 315 316 317 318

  {
    platform::ForRange<platform::CUDADeviceContext> for_range(ctx, pre_nms_num);
    for_range(BoxDecodeAndClipFunctor<T>{
        anchors.data<T>(), bbox_deltas.data<T>(), variances.data<T>(),
        index_sort.data<int>(), im_info.data<T>(), proposals.data<T>()});
  }
319 320 321 322 323 324

  // 3. filter
  Tensor keep_index, keep_num_t;
  keep_index.mutable_data<int>({pre_nms_num}, ctx.GetPlace());
  keep_num_t.mutable_data<int>({1}, ctx.GetPlace());
  min_size = std::max(min_size, 1.0f);
325
  auto stream = ctx.stream();
326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368
  FilterBBoxes<T, 512><<<1, 512, 0, stream>>>(
      proposals.data<T>(), im_info.data<T>(), min_size, pre_nms_num,
      keep_num_t.data<int>(), keep_index.data<int>());
  int keep_num;
  const auto gpu_place = boost::get<platform::CUDAPlace>(ctx.GetPlace());
  memory::Copy(platform::CPUPlace(), &keep_num, gpu_place,
               keep_num_t.data<int>(), sizeof(int), 0);
  keep_index.Resize({keep_num});

  Tensor scores_filter, proposals_filter;
  proposals_filter.mutable_data<T>({keep_num, 4}, ctx.GetPlace());
  scores_filter.mutable_data<T>({keep_num, 1}, ctx.GetPlace());
  GPUGather<T>(ctx, proposals, keep_index, &proposals_filter);
  GPUGather<T>(ctx, scores_sort, keep_index, &scores_filter);

  if (nms_thresh <= 0) {
    return std::make_pair(proposals_filter, scores_filter);
  }

  // 4. nms
  Tensor keep_nms;
  NMS<T>(ctx, proposals_filter, keep_index, nms_thresh, &keep_nms);
  if (post_nms_top_n > 0 && post_nms_top_n < keep_nms.numel()) {
    keep_nms.Resize({post_nms_top_n});
  }

  Tensor scores_nms, proposals_nms;
  proposals_nms.mutable_data<T>({keep_nms.numel(), 4}, ctx.GetPlace());
  scores_nms.mutable_data<T>({keep_nms.numel(), 1}, ctx.GetPlace());
  GPUGather<T>(ctx, proposals_filter, keep_nms, &proposals_nms);
  GPUGather<T>(ctx, scores_filter, keep_nms, &scores_nms);

  return std::make_pair(proposals_nms, scores_nms);
}
}  // namespace

template <typename DeviceContext, typename T>
class CUDAGenerateProposalsKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext &context) const override {
    auto *scores = context.Input<Tensor>("Scores");
    auto *bbox_deltas = context.Input<Tensor>("BboxDeltas");
    auto *im_info = context.Input<Tensor>("ImInfo");
369 370 371 372 373 374
    auto anchors = detail::Ref(context.Input<Tensor>("Anchors"),
                               "Cannot find input Anchors(%s) in scope",
                               context.Inputs("Anchors")[0]);
    auto variances = detail::Ref(context.Input<Tensor>("Variances"),
                                 "Cannot find input Variances(%s) in scope",
                                 context.Inputs("Variances")[0]);
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409

    auto *rpn_rois = context.Output<LoDTensor>("RpnRois");
    auto *rpn_roi_probs = context.Output<LoDTensor>("RpnRoiProbs");

    int pre_nms_top_n = context.Attr<int>("pre_nms_topN");
    int post_nms_top_n = context.Attr<int>("post_nms_topN");
    float nms_thresh = context.Attr<float>("nms_thresh");
    float min_size = context.Attr<float>("min_size");
    float eta = context.Attr<float>("eta");
    PADDLE_ENFORCE_GE(eta, 1., "Not support adaptive NMS.");

    auto &dev_ctx = context.template device_context<DeviceContext>();

    auto scores_dim = scores->dims();
    int64_t num = scores_dim[0];
    int64_t c_score = scores_dim[1];
    int64_t h_score = scores_dim[2];
    int64_t w_score = scores_dim[3];

    auto bbox_dim = bbox_deltas->dims();
    int64_t c_bbox = bbox_dim[1];
    int64_t h_bbox = bbox_dim[2];
    int64_t w_bbox = bbox_dim[3];

    Tensor bbox_deltas_swap, scores_swap;
    bbox_deltas_swap.mutable_data<T>({num, h_bbox, w_bbox, c_bbox},
                                     dev_ctx.GetPlace());
    scores_swap.mutable_data<T>({num, h_score, w_score, c_score},
                                dev_ctx.GetPlace());

    math::Transpose<DeviceContext, T, 4> trans;
    std::vector<int> axis = {0, 2, 3, 1};
    trans(dev_ctx, *bbox_deltas, &bbox_deltas_swap, axis);
    trans(dev_ctx, *scores, &scores_swap, axis);

410 411
    anchors.Resize({anchors.numel() / 4, 4});
    variances.Resize({variances.numel() / 4, 4});
412 413 414 415 416 417 418 419

    rpn_rois->mutable_data<T>({bbox_deltas->numel() / 4, 4},
                              context.GetPlace());
    rpn_roi_probs->mutable_data<T>({scores->numel(), 1}, context.GetPlace());

    T *rpn_rois_data = rpn_rois->data<T>();
    T *rpn_roi_probs_data = rpn_roi_probs->data<T>();

420
    auto &place = boost::get<platform::CUDAPlace>(dev_ctx.GetPlace());
421 422 423 424 425 426 427 428 429 430 431 432

    int64_t num_proposals = 0;
    std::vector<size_t> offset(1, 0);
    for (int64_t i = 0; i < num; ++i) {
      Tensor im_info_slice = im_info->Slice(i, i + 1);
      Tensor bbox_deltas_slice = bbox_deltas_swap.Slice(i, i + 1);
      Tensor scores_slice = scores_swap.Slice(i, i + 1);

      bbox_deltas_slice.Resize({h_bbox * w_bbox * c_bbox / 4, 4});
      scores_slice.Resize({h_score * w_score * c_score, 1});

      std::pair<Tensor, Tensor> box_score_pair =
433
          ProposalForOneImage<T>(dev_ctx, im_info_slice, anchors, variances,
434 435 436
                                 bbox_deltas_slice, scores_slice, pre_nms_top_n,
                                 post_nms_top_n, nms_thresh, min_size, eta);

437 438
      Tensor &proposals = box_score_pair.first;
      Tensor &scores = box_score_pair.second;
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462

      memory::Copy(place, rpn_rois_data + num_proposals * 4, place,
                   proposals.data<T>(), sizeof(T) * proposals.numel(), 0);
      memory::Copy(place, rpn_roi_probs_data + num_proposals, place,
                   scores.data<T>(), sizeof(T) * scores.numel(), 0);
      num_proposals += proposals.dims()[0];
      offset.emplace_back(num_proposals);
    }
    framework::LoD lod;
    lod.emplace_back(offset);
    rpn_rois->set_lod(lod);
    rpn_roi_probs->set_lod(lod);
    rpn_rois->Resize({num_proposals, 4});
    rpn_roi_probs->Resize({num_proposals, 1});
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(generate_proposals,
                        ops::CUDAGenerateProposalsKernel<
                            paddle::platform::CUDADeviceContext, float>);