picodet_mnn.cpp 7.5 KB
Newer Older
Z
zhiboniu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// reference from https://github.com/RangiLyu/nanodet/tree/main/demo_mnn

#include "picodet_mnn.h"

using namespace std;

PicoDet::PicoDet(const std::string &mnn_path,
                 int input_width,
                 int input_length,
                 int num_thread_,
                 float score_threshold_,
                 float nms_threshold_) {
  num_thread = num_thread_;
  in_w = input_width;
  in_h = input_length;
  score_threshold = score_threshold_;
  nms_threshold = nms_threshold_;

  PicoDet_interpreter = std::shared_ptr<MNN::Interpreter>(
      MNN::Interpreter::createFromFile(mnn_path.c_str()));
  MNN::ScheduleConfig config;
  config.numThread = num_thread;
  MNN::BackendConfig backendConfig;
  backendConfig.precision = (MNN::BackendConfig::PrecisionMode)2;
  config.backendConfig = &backendConfig;

  PicoDet_session = PicoDet_interpreter->createSession(config);

  input_tensor = PicoDet_interpreter->getSessionInput(PicoDet_session, nullptr);
}

PicoDet::~PicoDet() {
  PicoDet_interpreter->releaseModel();
  PicoDet_interpreter->releaseSession(PicoDet_session);
}

int PicoDet::detect(cv::Mat &raw_image, std::vector<BoxInfo> &result_list) {
  if (raw_image.empty()) {
    std::cout << "image is empty ,please check!" << std::endl;
    return -1;
  }

  image_h = raw_image.rows;
  image_w = raw_image.cols;
  cv::Mat image;
  cv::resize(raw_image, image, cv::Size(in_w, in_h));

  PicoDet_interpreter->resizeTensor(input_tensor, {1, 3, in_h, in_w});
  PicoDet_interpreter->resizeSession(PicoDet_session);
  std::shared_ptr<MNN::CV::ImageProcess> pretreat(MNN::CV::ImageProcess::create(
      MNN::CV::BGR, MNN::CV::BGR, mean_vals, 3, norm_vals, 3));
  pretreat->convert(image.data, in_w, in_h, image.step[0], input_tensor);

  auto start = chrono::steady_clock::now();

  // run network
  PicoDet_interpreter->runSession(PicoDet_session);

  // get output data
  std::vector<std::vector<BoxInfo>> results;
  results.resize(num_class);

  for (const auto &head_info : heads_info) {
    MNN::Tensor *tensor_scores = PicoDet_interpreter->getSessionOutput(
        PicoDet_session, head_info.cls_layer.c_str());
    MNN::Tensor *tensor_boxes = PicoDet_interpreter->getSessionOutput(
        PicoDet_session, head_info.dis_layer.c_str());

    MNN::Tensor tensor_scores_host(tensor_scores,
                                   tensor_scores->getDimensionType());
    tensor_scores->copyToHostTensor(&tensor_scores_host);

    MNN::Tensor tensor_boxes_host(tensor_boxes,
                                  tensor_boxes->getDimensionType());
    tensor_boxes->copyToHostTensor(&tensor_boxes_host);

    decode_infer(&tensor_scores_host,
                 &tensor_boxes_host,
                 head_info.stride,
                 score_threshold,
                 results);
  }

  auto end = chrono::steady_clock::now();
  chrono::duration<double> elapsed = end - start;
  cout << "inference time:" << elapsed.count() << " s, ";

  for (int i = 0; i < (int)results.size(); i++) {
    nms(results[i], nms_threshold);

    for (auto box : results[i]) {
      box.x1 = box.x1 / in_w * image_w;
      box.x2 = box.x2 / in_w * image_w;
      box.y1 = box.y1 / in_h * image_h;
      box.y2 = box.y2 / in_h * image_h;
      result_list.push_back(box);
    }
  }
  cout << "detect " << result_list.size() << " objects." << std::endl;
  ;

  return 0;
}

void PicoDet::decode_infer(MNN::Tensor *cls_pred,
                           MNN::Tensor *dis_pred,
                           int stride,
                           float threshold,
                           std::vector<std::vector<BoxInfo>> &results) {
  int feature_h = in_h / stride;
  int feature_w = in_w / stride;

  for (int idx = 0; idx < feature_h * feature_w; idx++) {
    const float *scores = cls_pred->host<float>() + (idx * num_class);
    int row = idx / feature_w;
    int col = idx % feature_w;
    float score = 0;
    int cur_label = 0;
    for (int label = 0; label < num_class; label++) {
      if (scores[label] > score) {
        score = scores[label];
        cur_label = label;
      }
    }
    if (score > threshold) {
      const float *bbox_pred =
          dis_pred->host<float>() + (idx * 4 * (reg_max + 1));
      results[cur_label].push_back(
          disPred2Bbox(bbox_pred, cur_label, score, col, row, stride));
    }
  }
}

BoxInfo PicoDet::disPred2Bbox(
    const float *&dfl_det, int label, float score, int x, int y, int stride) {
  float ct_x = (x + 0.5) * stride;
  float ct_y = (y + 0.5) * stride;
  std::vector<float> dis_pred;
  dis_pred.resize(4);
  for (int i = 0; i < 4; i++) {
    float dis = 0;
    float *dis_after_sm = new float[reg_max + 1];
    activation_function_softmax(
        dfl_det + i * (reg_max + 1), dis_after_sm, reg_max + 1);
    for (int j = 0; j < reg_max + 1; j++) {
      dis += j * dis_after_sm[j];
    }
    dis *= stride;
    dis_pred[i] = dis;
    delete[] dis_after_sm;
  }
  float xmin = (std::max)(ct_x - dis_pred[0], .0f);
  float ymin = (std::max)(ct_y - dis_pred[1], .0f);
  float xmax = (std::min)(ct_x + dis_pred[2], (float)in_w);
  float ymax = (std::min)(ct_y + dis_pred[3], (float)in_h);
  return BoxInfo{xmin, ymin, xmax, ymax, score, label};
}

void PicoDet::nms(std::vector<BoxInfo> &input_boxes, float NMS_THRESH) {
  std::sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) {
    return a.score > b.score;
  });
  std::vector<float> vArea(input_boxes.size());
  for (int i = 0; i < int(input_boxes.size()); ++i) {
    vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1) *
               (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
  }
  for (int i = 0; i < int(input_boxes.size()); ++i) {
    for (int j = i + 1; j < int(input_boxes.size());) {
      float xx1 = (std::max)(input_boxes[i].x1, input_boxes[j].x1);
      float yy1 = (std::max)(input_boxes[i].y1, input_boxes[j].y1);
      float xx2 = (std::min)(input_boxes[i].x2, input_boxes[j].x2);
      float yy2 = (std::min)(input_boxes[i].y2, input_boxes[j].y2);
      float w = (std::max)(float(0), xx2 - xx1 + 1);
      float h = (std::max)(float(0), yy2 - yy1 + 1);
      float inter = w * h;
      float ovr = inter / (vArea[i] + vArea[j] - inter);
      if (ovr >= NMS_THRESH) {
        input_boxes.erase(input_boxes.begin() + j);
        vArea.erase(vArea.begin() + j);
      } else {
        j++;
      }
    }
  }
}

string PicoDet::get_label_str(int label) { return labels[label]; }

inline float fast_exp(float x) {
  union {
    uint32_t i;
    float f;
  } v{};
  v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f);
  return v.f;
}

inline float sigmoid(float x) { return 1.0f / (1.0f + fast_exp(-x)); }

template <typename _Tp>
int activation_function_softmax(const _Tp *src, _Tp *dst, int length) {
  const _Tp alpha = *std::max_element(src, src + length);
  _Tp denominator{0};

  for (int i = 0; i < length; ++i) {
    dst[i] = fast_exp(src[i] - alpha);
    denominator += dst[i];
  }

  for (int i = 0; i < length; ++i) {
    dst[i] /= denominator;
  }

  return 0;
}