networks.py 64.3 KB
Newer Older
1
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
Z
zhangjinchao01 已提交
2 3 4 5 6 7 8 9 10 11 12 13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
R
ranqiu 已提交
14
import math
P
peterzhang2029 已提交
15

Z
zhangjinchao01 已提交
16 17 18 19
from activations import LinearActivation, ReluActivation, SoftmaxActivation, \
    IdentityActivation, TanhActivation, SequenceSoftmaxActivation
from attrs import ExtraAttr
from default_decorators import wrap_name_default, wrap_act_default, \
Y
Yu Yang 已提交
20
    wrap_param_default, wrap_bias_attr_default, wrap_param_attr_default
Z
zhangjinchao01 已提交
21 22 23 24
from layers import *  # There are too many layers used in network, so import *
from poolings import MaxPooling, SumPooling
from paddle.trainer.config_parser import *

Q
qijun 已提交
25 26
__all__ = [
    'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool",
27
    "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg',
W
wangmeng28 已提交
28 29 30 31
    'img_conv_group', 'img_separable_conv', 'vgg_16_network', 'gru_unit',
    'gru_group', 'simple_gru', 'simple_attention', 'dot_product_attention',
    'multi_head_attention', 'simple_gru2', 'bidirectional_gru',
    'text_conv_pool', 'bidirectional_lstm', 'inputs', 'outputs'
Q
qijun 已提交
32
]
Z
zhangjinchao01 已提交
33 34 35 36 37

######################################################
#                     Text CNN                       #
######################################################

Q
qijun 已提交
38

Z
zhangjinchao01 已提交
39 40
@wrap_name_default("sequence_conv_pooling")
def sequence_conv_pool(input,
Q
qijun 已提交
41 42
                       context_len,
                       hidden_size,
Z
zhangjinchao01 已提交
43 44
                       name=None,
                       context_start=None,
Q
qijun 已提交
45 46
                       pool_type=None,
                       context_proj_layer_name=None,
Z
zhangjinchao01 已提交
47 48 49
                       context_proj_param_attr=False,
                       fc_layer_name=None,
                       fc_param_attr=None,
Q
qijun 已提交
50 51
                       fc_bias_attr=None,
                       fc_act=None,
Z
zhangjinchao01 已提交
52 53 54 55 56
                       pool_bias_attr=None,
                       fc_attr=None,
                       context_attr=None,
                       pool_attr=None):
    """
57
    Text convolution pooling group.
Z
zhangjinchao01 已提交
58 59 60

    Text input => Context Projection => FC Layer => Pooling => Output.

61
    :param name: group name.
Z
zhangjinchao01 已提交
62
    :type name: basestring
63
    :param input: input layer.
Z
zhangjinchao01 已提交
64 65 66 67 68 69
    :type input: LayerOutput
    :param context_len: context projection length. See
                        context_projection's document.
    :type context_len: int
    :param hidden_size: FC Layer size.
    :type hidden_size: int
70
    :param context_start: context start position. See
Z
zhangjinchao01 已提交
71
                          context_projection's context_start.
72
    :type context_start: int|None
Z
zhangjinchao01 已提交
73
    :param pool_type: pooling layer type. See pooling_layer's document.
74
    :type pool_type: BasePoolingType
Z
zhangjinchao01 已提交
75 76 77
    :param context_proj_layer_name: context projection layer name.
                                    None if user don't care.
    :type context_proj_layer_name: basestring
78 79 80
    :param context_proj_param_attr: padding parameter attribute of context projection layer.
                                    If false, it means padding always be zero.
    :type context_proj_param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
81 82 83
    :param fc_layer_name: fc layer name. None if user don't care.
    :type fc_layer_name: basestring
    :param fc_param_attr: fc layer parameter attribute. None if user don't care.
84
    :type fc_param_attr: ParameterAttribute|None
Z
zhangjinchao01 已提交
85 86
    :param fc_bias_attr: fc bias parameter attribute. False if no bias,
                         None if user don't care.
87 88
    :type fc_bias_attr: ParameterAttribute|False|None
    :param fc_act: fc layer activation type. None means tanh.
Z
zhangjinchao01 已提交
89
    :type fc_act: BaseActivation
90 91 92
    :param pool_bias_attr: pooling layer bias attr. False if no bias.
                           None if user don't care.
    :type pool_bias_attr: ParameterAttribute|False|None
Z
zhangjinchao01 已提交
93 94 95 96 97 98
    :param fc_attr: fc layer extra attribute.
    :type fc_attr: ExtraLayerAttribute
    :param context_attr: context projection layer extra attribute.
    :type context_attr: ExtraLayerAttribute
    :param pool_attr: pooling layer extra attribute.
    :type pool_attr: ExtraLayerAttribute
99
    :return: layer's output.
Z
zhangjinchao01 已提交
100 101 102 103 104 105
    :rtype: LayerOutput
    """
    # Set Default Value to param
    context_proj_layer_name = "%s_conv_proj" % name \
        if context_proj_layer_name is None else context_proj_layer_name

Q
qijun 已提交
106 107 108 109 110 111 112 113 114 115
    with mixed_layer(
            name=context_proj_layer_name,
            size=input.size * context_len,
            act=LinearActivation(),
            layer_attr=context_attr) as m:
        m += context_projection(
            input,
            context_len=context_len,
            context_start=context_start,
            padding_attr=context_proj_param_attr)
Z
zhangjinchao01 已提交
116 117 118

    fc_layer_name = "%s_conv_fc" % name \
        if fc_layer_name is None else fc_layer_name
Q
qijun 已提交
119 120 121 122 123 124 125 126
    fl = fc_layer(
        name=fc_layer_name,
        input=m,
        size=hidden_size,
        act=fc_act,
        layer_attr=fc_attr,
        param_attr=fc_param_attr,
        bias_attr=fc_bias_attr)
Z
zhangjinchao01 已提交
127

Q
qijun 已提交
128 129 130 131 132 133
    return pooling_layer(
        name=name,
        input=fl,
        pooling_type=pool_type,
        bias_attr=pool_bias_attr,
        layer_attr=pool_attr)
Z
zhangjinchao01 已提交
134 135 136 137 138 139 140 141


text_conv_pool = sequence_conv_pool

############################################################################
#                       Images                                             #
############################################################################

Q
qijun 已提交
142

Z
zhangjinchao01 已提交
143
@wrap_name_default("conv_pool")
Q
qijun 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
def simple_img_conv_pool(input,
                         filter_size,
                         num_filters,
                         pool_size,
                         name=None,
                         pool_type=None,
                         act=None,
                         groups=1,
                         conv_stride=1,
                         conv_padding=0,
                         bias_attr=None,
                         num_channel=None,
                         param_attr=None,
                         shared_bias=True,
                         conv_layer_attr=None,
                         pool_stride=1,
                         pool_padding=0,
                         pool_layer_attr=None):
Z
zhangjinchao01 已提交
162 163 164
    """
    Simple image convolution and pooling group.

165
    Img input => Conv => Pooling => Output.
Z
zhangjinchao01 已提交
166

167
    :param name: group name.
Z
zhangjinchao01 已提交
168
    :type name: basestring
169
    :param input: input layer.
Z
zhangjinchao01 已提交
170
    :type input: LayerOutput
171
    :param filter_size: see img_conv_layer for details.
Z
zhangjinchao01 已提交
172
    :type filter_size: int
173
    :param num_filters: see img_conv_layer for details.
Z
zhangjinchao01 已提交
174
    :type num_filters: int
175
    :param pool_size: see img_pool_layer for details.
Z
zhangjinchao01 已提交
176
    :type pool_size: int
177
    :param pool_type: see img_pool_layer for details.
Z
zhangjinchao01 已提交
178
    :type pool_type: BasePoolingType
179
    :param act: see img_conv_layer for details.
Z
zhangjinchao01 已提交
180
    :type act: BaseActivation
181
    :param groups: see img_conv_layer for details.
Z
zhangjinchao01 已提交
182
    :type groups: int
183
    :param conv_stride: see img_conv_layer for details.
Z
zhangjinchao01 已提交
184
    :type conv_stride: int
185
    :param conv_padding: see img_conv_layer for details.
Z
zhangjinchao01 已提交
186
    :type conv_padding: int
187
    :param bias_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
188
    :type bias_attr: ParameterAttribute
189
    :param num_channel: see img_conv_layer for details.
Z
zhangjinchao01 已提交
190
    :type num_channel: int
191
    :param param_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
192
    :type param_attr: ParameterAttribute
193
    :param shared_bias: see img_conv_layer for details.
Z
zhangjinchao01 已提交
194
    :type shared_bias: bool
195
    :param conv_layer_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
196
    :type conv_layer_attr: ExtraLayerAttribute
197
    :param pool_stride: see img_pool_layer for details.
Z
zhangjinchao01 已提交
198
    :type pool_stride: int
199
    :param pool_padding: see img_pool_layer for details.
Z
zhangjinchao01 已提交
200
    :type pool_padding: int
201
    :param pool_layer_attr: see img_pool_layer for details.
Z
zhangjinchao01 已提交
202
    :type pool_layer_attr: ExtraLayerAttribute
203
    :return: layer's output
Z
zhangjinchao01 已提交
204 205
    :rtype: LayerOutput
    """
Q
qijun 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    _conv_ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=act,
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=bias_attr,
        param_attr=param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=_conv_,
        pool_size=pool_size,
        pool_type=pool_type,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)
Z
zhangjinchao01 已提交
228 229 230


@wrap_name_default("conv_bn_pool")
Q
qijun 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251
def img_conv_bn_pool(input,
                     filter_size,
                     num_filters,
                     pool_size,
                     name=None,
                     pool_type=None,
                     act=None,
                     groups=1,
                     conv_stride=1,
                     conv_padding=0,
                     conv_bias_attr=None,
                     num_channel=None,
                     conv_param_attr=None,
                     shared_bias=True,
                     conv_layer_attr=None,
                     bn_param_attr=None,
                     bn_bias_attr=None,
                     bn_layer_attr=None,
                     pool_stride=1,
                     pool_padding=0,
                     pool_layer_attr=None):
Z
zhangjinchao01 已提交
252 253
    """
    Convolution, batch normalization, pooling group.
W
wangmeng28 已提交
254

255
    Img input => Conv => BN => Pooling => Output.
Z
zhangjinchao01 已提交
256

257
    :param name: group name.
Z
zhangjinchao01 已提交
258
    :type name: basestring
259
    :param input: input layer.
W
wangmeng28 已提交
260
    :type input: LayerOutput
261
    :param filter_size: see img_conv_layer for details.
Z
zhangjinchao01 已提交
262
    :type filter_size: int
263
    :param num_filters: see img_conv_layer for details.
Z
zhangjinchao01 已提交
264
    :type num_filters: int
265
    :param pool_size: see img_pool_layer for details.
Z
zhangjinchao01 已提交
266
    :type pool_size: int
267
    :param pool_type: see img_pool_layer for details.
Z
zhangjinchao01 已提交
268
    :type pool_type: BasePoolingType
269
    :param act: see batch_norm_layer for details.
Z
zhangjinchao01 已提交
270
    :type act: BaseActivation
271
    :param groups: see img_conv_layer for details.
Z
zhangjinchao01 已提交
272
    :type groups: int
273
    :param conv_stride: see img_conv_layer for details.
Z
zhangjinchao01 已提交
274
    :type conv_stride: int
275
    :param conv_padding: see img_conv_layer for details.
Z
zhangjinchao01 已提交
276
    :type conv_padding: int
277
    :param conv_bias_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
278
    :type conv_bias_attr: ParameterAttribute
279
    :param num_channel: see img_conv_layer for details.
Z
zhangjinchao01 已提交
280
    :type num_channel: int
281
    :param conv_param_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
282
    :type conv_param_attr: ParameterAttribute
283
    :param shared_bias: see img_conv_layer for details.
Z
zhangjinchao01 已提交
284
    :type shared_bias: bool
285
    :param conv_layer_attr: see img_conv_layer for details.
Z
zhangjinchao01 已提交
286
    :type conv_layer_attr: ExtraLayerOutput
287 288 289 290 291 292 293
    :param bn_param_attr: see batch_norm_layer for details.
    :type bn_param_attr: ParameterAttribute
    :param bn_bias_attr: see batch_norm_layer for details.
    :type bn_bias_attr: ParameterAttribute
    :param bn_layer_attr: see batch_norm_layer for details.
    :type bn_layer_attr: ExtraLayerAttribute
    :param pool_stride: see img_pool_layer for details.
Z
zhangjinchao01 已提交
294
    :type pool_stride: int
295
    :param pool_padding: see img_pool_layer for details.
Z
zhangjinchao01 已提交
296
    :type pool_padding: int
297
    :param pool_layer_attr: see img_pool_layer for details.
Z
zhangjinchao01 已提交
298
    :type pool_layer_attr: ExtraLayerAttribute
299
    :return: layer's output
Z
zhangjinchao01 已提交
300 301
    :rtype: LayerOutput
    """
Q
qijun 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
    __conv__ = img_conv_layer(
        name="%s_conv" % name,
        input=input,
        filter_size=filter_size,
        num_filters=num_filters,
        num_channels=num_channel,
        act=LinearActivation(),
        groups=groups,
        stride=conv_stride,
        padding=conv_padding,
        bias_attr=conv_bias_attr,
        param_attr=conv_param_attr,
        shared_biases=shared_bias,
        layer_attr=conv_layer_attr)
    __bn__ = batch_norm_layer(
        name="%s_bn" % name,
        input=__conv__,
        act=act,
        bias_attr=bn_bias_attr,
        param_attr=bn_param_attr,
        layer_attr=bn_layer_attr)
    return img_pool_layer(
        name="%s_pool" % name,
        input=__bn__,
        pool_type=pool_type,
        pool_size=pool_size,
        stride=pool_stride,
        padding=pool_padding,
        layer_attr=pool_layer_attr)


@wrap_act_default(param_names=['conv_act'], act=ReluActivation())
@wrap_param_default(
    param_names=['pool_type'], default_factory=lambda _: MaxPooling())
def img_conv_group(input,
                   conv_num_filter,
Z
zhangjinchao01 已提交
338 339 340 341 342 343 344 345
                   pool_size,
                   num_channels=None,
                   conv_padding=1,
                   conv_filter_size=3,
                   conv_act=None,
                   conv_with_batchnorm=False,
                   conv_batchnorm_drop_rate=0,
                   pool_stride=1,
Z
zlx 已提交
346 347
                   pool_type=None,
                   param_attr=None):
Z
zhangjinchao01 已提交
348 349 350
    """
    Image Convolution Group, Used for vgg net.

Z
zlx 已提交
351 352 353
    :param conv_batchnorm_drop_rate: if conv_with_batchnorm[i] is true,
        conv_batchnorm_drop_rate[i] represents the drop rate of each batch norm.
    :type conv_batchnorm_drop_rate: list
354
    :param input: input layer.
Z
zlx 已提交
355
    :type input: LayerOutput
356 357
    :param conv_num_filter: list of output channels num.
    :type conv_num_filter: list|tuple
Z
zlx 已提交
358 359 360 361 362 363 364 365 366 367
    :param pool_size: pooling filter size.
    :type pool_size: int
    :param num_channels: input channels num.
    :type num_channels: int
    :param conv_padding: convolution padding size.
    :type conv_padding: int
    :param conv_filter_size: convolution filter size.
    :type conv_filter_size: int
    :param conv_act: activation funciton after convolution.
    :type conv_act: BaseActivation
368 369
    :param conv_with_batchnorm: if conv_with_batchnorm[i] is true,
        there is a batch normalization operation after each convolution.
Z
zlx 已提交
370 371 372 373 374
    :type conv_with_batchnorm: list
    :param pool_stride: pooling stride size.
    :type pool_stride: int
    :param pool_type: pooling type.
    :type pool_type: BasePoolingType
375 376
    :param param_attr: param attribute of convolution layer,
                       None means default attribute.
Z
zlx 已提交
377
    :type param_attr: ParameterAttribute
378 379
    :return: layer's output
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413
    """
    tmp = input

    # Type checks
    assert isinstance(tmp, LayerOutput)
    assert isinstance(conv_num_filter, list) or isinstance(conv_num_filter,
                                                           tuple)
    for each_num_filter in conv_num_filter:
        assert isinstance(each_num_filter, int)

    assert isinstance(pool_size, int)

    def __extend_list__(obj):
        if not hasattr(obj, '__len__'):
            return [obj] * len(conv_num_filter)
        else:
            return obj

    conv_padding = __extend_list__(conv_padding)
    conv_filter_size = __extend_list__(conv_filter_size)
    conv_act = __extend_list__(conv_act)
    conv_with_batchnorm = __extend_list__(conv_with_batchnorm)
    conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate)

    for i in xrange(len(conv_num_filter)):
        extra_kwargs = dict()
        if num_channels is not None:
            extra_kwargs['num_channels'] = num_channels
            num_channels = None
        if conv_with_batchnorm[i]:
            extra_kwargs['act'] = LinearActivation()
        else:
            extra_kwargs['act'] = conv_act[i]

Q
qijun 已提交
414 415 416 417 418
        tmp = img_conv_layer(
            input=tmp,
            padding=conv_padding[i],
            filter_size=conv_filter_size[i],
            num_filters=conv_num_filter[i],
Z
zlx 已提交
419
            param_attr=param_attr,
Q
qijun 已提交
420
            **extra_kwargs)
Z
zhangjinchao01 已提交
421 422 423 424 425 426 427 428

        # logger.debug("tmp.num_filters = %d" % tmp.num_filters)

        if conv_with_batchnorm[i]:
            dropout = conv_batchnorm_drop_rate[i]
            if dropout == 0 or abs(dropout) < 1e-5:  # dropout not set
                tmp = batch_norm_layer(input=tmp, act=conv_act[i])
            else:
Q
qijun 已提交
429 430 431 432
                tmp = batch_norm_layer(
                    input=tmp,
                    act=conv_act[i],
                    layer_attr=ExtraAttr(drop_rate=dropout))
Z
zhangjinchao01 已提交
433

Q
qijun 已提交
434 435
    return img_pool_layer(
        input=tmp, stride=pool_stride, pool_size=pool_size, pool_type=pool_type)
Z
zhangjinchao01 已提交
436 437


W
wangmeng28 已提交
438 439 440 441 442 443 444 445 446 447 448 449
@wrap_name_default("separable_conv")
def img_separable_conv(input,
                       num_channels,
                       num_out_channels,
                       filter_size,
                       stride=1,
                       padding=0,
                       depth_multiplier=1,
                       act=None,
                       bias_attr=None,
                       param_attr=None,
                       shared_bias=True,
450
                       layer_type='exconv',
W
wangmeng28 已提交
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512
                       name=None):
    """
    Separable Convolution.

    The separable convolution module is consisted of a depthwise convolution
    that acts separately on input channels, followed by a pointwise convolution
    with 1*1 kernels that mixes channels. It is used for Xception:
    https://arxiv.org/pdf/1610.02357.pdf

    :param input: input layer.
    :type input: LayerOutput
    :param num_channels: the number of input channels.
    :type num_channels: int
    :param num_out_channels: the number of output channels.
    :type num_out_channels: int
    :param filter_size: the filter size for the depthwise convolution.
    :type filter_size: int|tuple
    :param stride: the stride size for the depthwise convolution.
    :type stride: int|tuple
    :param padding: the padding size for the depthwise convolution.
    :type padding: int|tuple
    :param depth_multiplier: the number of filter for one channel in the
                             depthwize convolution.
    :type depth_multiplier: int
    :param act: the activation function for the output.
    :type act: BaseActivation
    :param bias_attr: see img_conv_layer for details.
    :type bias_attr: ParameterAttribute
    :param param_attr: see img_conv_layer for details.
    :type param_attr: ParameterAttribute
    :param shared_bias: see img_conv_layer for details.
    :type shared_bias: bool
    :param layer_type: see img_conv_layer for details.
    :type layer_type: bool
    :return: layer's output
    :rtype: LayerOutput
    """
    __depthwise_conv__ = img_conv_layer(
        name="%s_depthwise_conv" % name,
        input=input,
        num_channels=num_channels,
        num_filters=num_channels * depth_multiplier,
        groups=num_channels,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        act=LinearActivation(),
        bias_attr=bias_attr,
        param_attr=param_attr,
        shared_biases=shared_bias,
        layer_type=layer_type)
    __pointwise_conv__ = img_conv_layer(
        name="%s_pointwise_conv" % name,
        input=__depthwise_conv__,
        num_channels=num_channels * depth_multiplier,
        num_filters=num_out_channels,
        filter_size=1,
        stride=1,
        padding=0,
        act=act,
        bias_attr=bias_attr,
        param_attr=param_attr,
513
        shared_biases=shared_bias)
W
wangmeng28 已提交
514 515 516
    return __pointwise_conv__


Z
zhangjinchao01 已提交
517 518
def small_vgg(input_image, num_channels, num_classes):
    def __vgg__(ipt, num_filter, times, dropouts, num_channels_=None):
Q
qijun 已提交
519 520 521 522 523 524 525 526 527 528 529
        return img_conv_group(
            input=ipt,
            num_channels=num_channels_,
            pool_size=2,
            pool_stride=2,
            conv_num_filter=[num_filter] * times,
            conv_filter_size=3,
            conv_act=ReluActivation(),
            conv_with_batchnorm=True,
            conv_batchnorm_drop_rate=dropouts,
            pool_type=MaxPooling())
Z
zhangjinchao01 已提交
530 531 532 533 534

    tmp = __vgg__(input_image, 64, 2, [0.3, 0], num_channels)
    tmp = __vgg__(tmp, 128, 2, [0.4, 0])
    tmp = __vgg__(tmp, 256, 3, [0.4, 0.4, 0])
    tmp = __vgg__(tmp, 512, 3, [0.4, 0.4, 0])
Q
qijun 已提交
535 536
    tmp = img_pool_layer(
        input=tmp, stride=2, pool_size=2, pool_type=MaxPooling())
Z
zhangjinchao01 已提交
537
    tmp = dropout_layer(input=tmp, dropout_rate=0.5)
Q
qijun 已提交
538 539 540 541 542
    tmp = fc_layer(
        input=tmp,
        size=512,
        layer_attr=ExtraAttr(drop_rate=0.5),
        act=LinearActivation())
Z
zhangjinchao01 已提交
543 544 545 546 547 548 549 550
    tmp = batch_norm_layer(input=tmp, act=ReluActivation())
    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


def vgg_16_network(input_image, num_channels, num_classes=1000):
    """
    Same model from https://gist.github.com/ksimonyan/211839e770f7b538e2d8

551 552 553
    :param num_classes: number of class.
    :type num_classes: int
    :param input_image: input layer.
Z
zhangjinchao01 已提交
554
    :type input_image: LayerOutput
555
    :param num_channels: input channels num.
Z
zhangjinchao01 已提交
556
    :type num_channels: int
557 558
    :return: layer's output
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
559 560
    """

Q
qijun 已提交
561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621
    tmp = img_conv_group(
        input=input_image,
        num_channels=num_channels,
        conv_padding=1,
        conv_num_filter=[64, 64],
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_size=2,
        pool_stride=2,
        pool_type=MaxPooling())

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[128, 128],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[256, 256, 256],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)
    tmp = img_conv_group(
        input=tmp,
        conv_num_filter=[512, 512, 512],
        conv_padding=1,
        conv_filter_size=3,
        conv_act=ReluActivation(),
        pool_stride=2,
        pool_type=MaxPooling(),
        pool_size=2)

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))

    tmp = fc_layer(
        input=tmp,
        size=4096,
        act=ReluActivation(),
        layer_attr=ExtraAttr(drop_rate=0.5))
Z
zhangjinchao01 已提交
622 623 624 625 626 627 628 629

    return fc_layer(input=tmp, size=num_classes, act=SoftmaxActivation())


############################################################################
#                       Recurrent                                          #
############################################################################

Q
qijun 已提交
630

Z
zhangjinchao01 已提交
631
@wrap_name_default("lstm")
Q
qijun 已提交
632 633 634 635 636 637 638 639 640 641 642
def simple_lstm(input,
                size,
                name=None,
                reverse=False,
                mat_param_attr=None,
                bias_param_attr=None,
                inner_param_attr=None,
                act=None,
                gate_act=None,
                state_act=None,
                mixed_layer_attr=None,
Z
zhangjinchao01 已提交
643 644 645 646
                lstm_cell_attr=None):
    """
    Simple LSTM Cell.

647 648
    It just combines a mixed layer with fully_matrix_projection and a lstmemory
    layer. The simple lstm cell was implemented with follow equations.
Z
zhangjinchao01 已提交
649 650 651

    ..  math::

L
luotao02 已提交
652
        i_t & = \\sigma(W_{xi}x_{t} + W_{hi}h_{t-1} + W_{ci}c_{t-1} + b_i)
Z
zhangjinchao01 已提交
653

L
luotao02 已提交
654
        f_t & = \\sigma(W_{xf}x_{t} + W_{hf}h_{t-1} + W_{cf}c_{t-1} + b_f)
Z
zhangjinchao01 已提交
655

L
luotao02 已提交
656
        c_t & = f_tc_{t-1} + i_t tanh (W_{xc}x_t+W_{hc}h_{t-1} + b_c)
Z
zhangjinchao01 已提交
657

L
luotao02 已提交
658
        o_t & = \\sigma(W_{xo}x_{t} + W_{ho}h_{t-1} + W_{co}c_t + b_o)
Z
zhangjinchao01 已提交
659

L
luotao02 已提交
660
        h_t & = o_t tanh(c_t)
Z
zhangjinchao01 已提交
661

662 663
    Please refer to **Generating Sequences With Recurrent Neural Networks** for more
    details about lstm. Link_ is here.
Z
zhangjinchao01 已提交
664 665 666 667 668

    .. _Link: http://arxiv.org/abs/1308.0850

    :param name: lstm layer name.
    :type name: basestring
669
    :param input: layer's input.
Z
zhangjinchao01 已提交
670 671 672
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
673
    :param reverse: process the input in a reverse order or not.
Z
zhangjinchao01 已提交
674
    :type reverse: bool
675
    :param mat_param_attr: parameter attribute of matrix projection in mixed layer.
Z
zhangjinchao01 已提交
676 677 678 679
    :type mat_param_attr: ParameterAttribute
    :param bias_param_attr: bias parameter attribute. False means no bias, None
                            means default bias.
    :type bias_param_attr: ParameterAttribute|False
680
    :param inner_param_attr: parameter attribute of lstm cell.
Z
zhangjinchao01 已提交
681
    :type inner_param_attr: ParameterAttribute
682
    :param act: last activiation type of lstm.
Z
zhangjinchao01 已提交
683
    :type act: BaseActivation
684
    :param gate_act: gate activiation type of lstm.
Z
zhangjinchao01 已提交
685
    :type gate_act: BaseActivation
686
    :param state_act: state activiation type of lstm.
Z
zhangjinchao01 已提交
687
    :type state_act: BaseActivation
688
    :param mixed_layer_attr: extra attribute of mixed layer.
Z
zhangjinchao01 已提交
689
    :type mixed_layer_attr: ExtraLayerAttribute
690
    :param lstm_cell_attr: extra attribute of lstm.
Z
zhangjinchao01 已提交
691
    :type lstm_cell_attr: ExtraLayerAttribute
692
    :return: layer's output.
Z
zhangjinchao01 已提交
693 694 695
    :rtype: LayerOutput
    """
    fc_name = 'lstm_transform_%s' % name
Q
qijun 已提交
696 697 698 699 700 701
    with mixed_layer(
            name=fc_name,
            size=size * 4,
            act=IdentityActivation(),
            layer_attr=mixed_layer_attr,
            bias_attr=False) as m:
Z
zhangjinchao01 已提交
702 703
        m += full_matrix_projection(input, param_attr=mat_param_attr)

Q
qijun 已提交
704 705 706 707 708 709 710 711 712 713
    return lstmemory(
        name=name,
        input=m,
        reverse=reverse,
        bias_attr=bias_param_attr,
        param_attr=inner_param_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
        layer_attr=lstm_cell_attr)
Z
zhangjinchao01 已提交
714 715 716


@wrap_name_default('lstm_unit')
Q
qijun 已提交
717
def lstmemory_unit(input,
718
                   out_memory=None,
Q
qijun 已提交
719 720 721 722 723 724
                   name=None,
                   size=None,
                   param_attr=None,
                   act=None,
                   gate_act=None,
                   state_act=None,
725 726
                   input_proj_bias_attr=None,
                   input_proj_layer_attr=None,
Q
qijun 已提交
727
                   lstm_bias_attr=None,
728
                   lstm_layer_attr=None):
Z
zhangjinchao01 已提交
729
    """
W
wangmeng28 已提交
730
    lstmemory_unit defines the caculation process of a LSTM unit during a
731 732
    single time step. This function is not a recurrent layer, so it can not be
    directly used to process sequence input. This function is always used in
C
caoying03 已提交
733 734 735 736 737 738 739 740 741
    recurrent_group (see layers.py for more details) to implement attention
    mechanism.

    Please refer to  **Generating Sequences With Recurrent Neural Networks**
    for more details about LSTM. The link goes as follows:
    .. _Link: https://arxiv.org/abs/1308.0850

    ..  math::

742
        i_t & = \\sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
C
caoying03 已提交
743

744
        f_t & = \\sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
C
caoying03 已提交
745

746
        c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
C
caoying03 已提交
747

748
        o_t & = \\sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
C
caoying03 已提交
749 750 751 752 753 754 755 756 757 758 759 760 761

        h_t & = o_t tanh(c_t)

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_unit(input=[layer1],
                                   size=256,
                                   act=TanhActivation(),
                                   gate_act=SigmoidActivation(),
                                   state_act=TanhActivation())

Z
zhangjinchao01 已提交
762

P
peterzhang2029 已提交
763
    :param input: Input layer.
L
luotao02 已提交
764
    :type input: LayerOutput
P
peterzhang2029 已提交
765
    :param out_memory: The output of previous time step.
766
    :type out_memory: LayerOutput | None
P
peterzhang2029 已提交
767
    :param name: The lstmemory unit name.
L
luotao02 已提交
768
    :type name: basestring
P
peterzhang2029 已提交
769
    :param size: The lstmemory unit size.
L
luotao02 已提交
770
    :type size: int
P
peterzhang2029 已提交
771 772 773
    :param param_attr: The parameter attribute for the weights in
                     input to hidden projection.
                     None means default attribute.
L
luotao02 已提交
774
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
775
    :param act: The last activiation type of lstm.
L
luotao02 已提交
776
    :type act: BaseActivation
P
peterzhang2029 已提交
777
    :param gate_act: The gate activiation type of lstm.
L
luotao02 已提交
778
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
779
    :param state_act: The state activiation type of lstm.
L
luotao02 已提交
780
    :type state_act: BaseActivation
P
peterzhang2029 已提交
781 782 783 784 785
    :param input_proj_bias_attr: The parameter attribute for the bias in
                      input to hidden projection.
                      False or None means no bias.
                      If this parameter is set to True,
                      the bias is initialized to zero.
P
peterzhang2029 已提交
786
    :type input_proj_bias_attr: ParameterAttribute|bool|None
P
peterzhang2029 已提交
787 788 789
    :param input_proj_layer_attr: The extra layer attribute for
                     input to hidden projection of the LSTM unit,
                     such as dropout, error clipping.
790
    :type input_proj_layer_attr: ExtraLayerAttribute
P
peterzhang2029 已提交
791 792 793 794
    :param lstm_bias_attr: The parameter attribute for the bias in lstm layer.
                      False or None means no bias.
                      If this parameter is set to True,
                      the bias is initialized to zero.
P
peterzhang2029 已提交
795
    :type lstm_bias_attr: ParameterAttribute|True|None
P
peterzhang2029 已提交
796
    :param lstm_layer_attr: The extra attribute of lstm layer.
L
luotao02 已提交
797
    :type lstm_layer_attr: ExtraLayerAttribute
P
peterzhang2029 已提交
798
    :return: The lstmemory unit name.
L
luotao02 已提交
799
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
800 801 802 803
    """
    if size is None:
        assert input.size % 4 == 0
        size = input.size / 4
804 805 806 807 808
    if out_memory is None:
        out_mem = memory(name=name, size=size)
    else:
        out_mem = out_memory

Z
zhangjinchao01 已提交
809 810
    state_mem = memory(name="%s_state" % name, size=size)

Q
qijun 已提交
811 812 813
    with mixed_layer(
            name="%s_input_recurrent" % name,
            size=size * 4,
814 815
            bias_attr=input_proj_bias_attr,
            layer_attr=input_proj_layer_attr,
Q
qijun 已提交
816
            act=IdentityActivation()) as m:
Z
zhangjinchao01 已提交
817 818 819 820 821 822 823 824 825 826 827 828
        m += identity_projection(input=input)
        m += full_matrix_projection(input=out_mem, param_attr=param_attr)

    lstm_out = lstm_step_layer(
        name=name,
        input=m,
        state=state_mem,
        size=size,
        bias_attr=lstm_bias_attr,
        act=act,
        gate_act=gate_act,
        state_act=state_act,
Q
qijun 已提交
829
        layer_attr=lstm_layer_attr)
830
    get_output_layer(name='%s_state' % name, input=lstm_out, arg_name='state')
Z
zhangjinchao01 已提交
831 832 833 834 835

    return lstm_out


@wrap_name_default('lstm_group')
Q
qijun 已提交
836 837 838
def lstmemory_group(input,
                    size=None,
                    name=None,
839
                    out_memory=None,
Q
qijun 已提交
840 841 842 843 844
                    reverse=False,
                    param_attr=None,
                    act=None,
                    gate_act=None,
                    state_act=None,
845 846
                    input_proj_bias_attr=None,
                    input_proj_layer_attr=None,
Q
qijun 已提交
847
                    lstm_bias_attr=None,
848
                    lstm_layer_attr=None):
Z
zhangjinchao01 已提交
849
    """
850
    lstm_group is a recurrent_group version of Long Short Term Memory. It
C
caoying03 已提交
851 852
    does exactly the same calculation as the lstmemory layer (see lstmemory in
    layers.py for the maths) does. A promising benefit is that LSTM memory
853
    cell states(or hidden states) in every time step are accessible to the
C
caoying03 已提交
854
    user. This is especially useful in attention model. If you do not need to
855
    access the internal states of the lstm and merely use its outputs,
856
    it is recommended to use the lstmemory, which is relatively faster than
C
caoying03 已提交
857 858 859 860
    lstmemory_group.

    NOTE: In PaddlePaddle's implementation, the following input-to-hidden
    multiplications:
861 862
    :math:`W_{x_i}x_{t}` , :math:`W_{x_f}x_{t}`,
    :math:`W_{x_c}x_t`, :math:`W_{x_o}x_{t}` are not done in lstmemory_unit to
C
caoying03 已提交
863 864 865 866 867 868 869 870 871 872 873 874
    speed up the calculations. Consequently, an additional mixed_layer with
    full_matrix_projection must be included before lstmemory_unit is called.

    The example usage is:

    ..  code-block:: python

        lstm_step = lstmemory_group(input=[layer1],
                                    size=256,
                                    act=TanhActivation(),
                                    gate_act=SigmoidActivation(),
                                    state_act=TanhActivation())
Z
zhangjinchao01 已提交
875

P
peterzhang2029 已提交
876
    :param input: Input layer.
L
luotao02 已提交
877
    :type input: LayerOutput
P
peterzhang2029 已提交
878
    :param size: The lstmemory group size.
L
luotao02 已提交
879
    :type size: int
P
peterzhang2029 已提交
880
    :param name: The name of lstmemory group.
L
luotao02 已提交
881
    :type name: basestring
P
peterzhang2029 已提交
882
    :param out_memory: The output of previous time step.
883
    :type out_memory: LayerOutput | None
P
peterzhang2029 已提交
884
    :param reverse: Process the input in a reverse order or not.
L
luotao02 已提交
885
    :type reverse: bool
P
peterzhang2029 已提交
886 887 888
    :param param_attr: The parameter attribute for the weights in
                     input to hidden projection.
                     None means default attribute.
L
luotao02 已提交
889
    :type param_attr: ParameterAttribute
P
peterzhang2029 已提交
890
    :param act: The last activiation type of lstm.
L
luotao02 已提交
891
    :type act: BaseActivation
P
peterzhang2029 已提交
892
    :param gate_act: The gate activiation type of lstm.
L
luotao02 已提交
893
    :type gate_act: BaseActivation
P
peterzhang2029 已提交
894
    :param state_act: The state activiation type of lstm.
L
luotao02 已提交
895
    :type state_act: BaseActivation
P
peterzhang2029 已提交
896 897 898 899 900
    :param input_proj_bias_attr: The parameter attribute for the bias in
                      input to hidden projection.
                      False or None means no bias.
                      If this parameter is set to True,
                      the bias is initialized to zero.
P
peterzhang2029 已提交
901
    :type input_proj_bias_attr: ParameterAttribute|bool|None
P
peterzhang2029 已提交
902 903 904
    :param input_proj_layer_attr: The extra layer attribute for
                     input to hidden projection of the LSTM unit,
                     such as dropout, error clipping.
905
    :type input_proj_layer_attr: ExtraLayerAttribute
P
peterzhang2029 已提交
906 907 908 909 910 911
    :param lstm_bias_attr: The parameter attribute for the bias in lstm layer.
                      False or None means no bias.
                      If this parameter is set to True,
                      the bias is initialized to zero.
    :type lstm_bias_attr: ParameterAttribute|True|None
    :param lstm_layer_attr: The extra attribute of lstm layer.
L
luotao02 已提交
912
    :type lstm_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
913
    :return: the lstmemory group.
L
luotao02 已提交
914
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
915 916 917
    """

    def __lstm_step__(ipt):
Q
qijun 已提交
918 919 920 921 922 923 924
        return lstmemory_unit(
            input=ipt,
            name=name,
            size=size,
            act=act,
            gate_act=gate_act,
            state_act=state_act,
925 926 927 928
            out_memory=out_memory,
            input_proj_bias_attr=input_proj_bias_attr,
            input_proj_layer_attr=input_proj_layer_attr,
            param_attr=param_attr,
Q
qijun 已提交
929
            lstm_layer_attr=lstm_layer_attr,
930
            lstm_bias_attr=lstm_bias_attr)
Q
qijun 已提交
931 932 933 934 935 936

    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__lstm_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
937 938 939 940


@wrap_name_default('gru_unit')
def gru_unit(input,
941
             memory_boot=None,
Z
zhangjinchao01 已提交
942 943 944
             size=None,
             name=None,
             gru_bias_attr=None,
W
wangyang59 已提交
945
             gru_param_attr=None,
Z
zhangjinchao01 已提交
946 947
             act=None,
             gate_act=None,
Y
Yu Yang 已提交
948 949
             gru_layer_attr=None,
             naive=False):
Z
zhangjinchao01 已提交
950
    """
W
wangmeng28 已提交
951
    gru_unit defines the calculation process of a gated recurrent unit during a single
952 953
    time step. This function is not a recurrent layer, so it can not be
    directly used to process sequence input. This function is always used in
C
caoying03 已提交
954 955
    the recurrent_group (see layers.py for more details) to implement attention
    mechanism.
Z
zhangjinchao01 已提交
956

C
caoying03 已提交
957 958
    Please see grumemory in layers.py for the details about the maths.

959
    :param input: input layer.
Z
zhangjinchao01 已提交
960
    :type input: LayerOutput
961 962
    :param memory_boot: the initialization state of the LSTM cell.
    :type memory_boot: LayerOutput | None
C
caoying03 已提交
963 964 965 966
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
967
    :param act: activation type of gru
C
caoying03 已提交
968
    :type act: BaseActivation
969
    :param gate_act: gate activation type or gru
C
caoying03 已提交
970
    :type gate_act: BaseActivation
971 972
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
973 974
    :return: the gru output layer.
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
975 976 977 978 979 980
    """

    assert input.size % 3 == 0
    if size is None:
        size = input.size / 3

981
    out_mem = memory(name=name, size=size, boot_layer=memory_boot)
Z
zhangjinchao01 已提交
982

Y
Yu Yang 已提交
983 984 985 986 987 988
    if naive:
        __step__ = gru_step_naive_layer
    else:
        __step__ = gru_step_layer

    gru_out = __step__(
Z
zhangjinchao01 已提交
989 990 991 992 993
        name=name,
        input=input,
        output_mem=out_mem,
        size=size,
        bias_attr=gru_bias_attr,
W
wangyang59 已提交
994
        param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
995 996
        act=act,
        gate_act=gate_act,
Q
qijun 已提交
997
        layer_attr=gru_layer_attr)
Z
zhangjinchao01 已提交
998 999 1000 1001 1002
    return gru_out


@wrap_name_default('gru_group')
def gru_group(input,
1003
              memory_boot=None,
Z
zhangjinchao01 已提交
1004 1005 1006 1007
              size=None,
              name=None,
              reverse=False,
              gru_bias_attr=None,
W
wangyang59 已提交
1008
              gru_param_attr=None,
Q
qijun 已提交
1009 1010
              act=None,
              gate_act=None,
Y
Yu Yang 已提交
1011 1012
              gru_layer_attr=None,
              naive=False):
C
caoying03 已提交
1013
    """
1014
    gru_group is a recurrent_group version of Gated Recurrent Unit. It
C
caoying03 已提交
1015
    does exactly the same calculation as the grumemory layer does. A promising
1016 1017
    benefit is that gru hidden states are accessible to the user. This is
    especially useful in attention model. If you do not need to access
1018
    any internal state and merely use the outputs of a GRU, it is recommended
C
caoying03 已提交
1019 1020 1021 1022 1023 1024 1025 1026
    to use the grumemory, which is relatively faster.

    Please see grumemory in layers.py for more detail about the maths.

    The example usage is:

    ..  code-block:: python

1027
        gru = gru_group(input=[layer1],
C
caoying03 已提交
1028 1029 1030 1031
                        size=256,
                        act=TanhActivation(),
                        gate_act=SigmoidActivation())

1032
    :param input: input layer.
C
caoying03 已提交
1033
    :type input: LayerOutput
1034 1035
    :param memory_boot: the initialization state of the LSTM cell.
    :type memory_boot: LayerOutput | None
C
caoying03 已提交
1036 1037 1038 1039
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
1040
    :param reverse: process the input in a reverse order or not.
C
caoying03 已提交
1041
    :type reverse: bool
1042
    :param act: activiation type of gru
C
caoying03 已提交
1043
    :type act: BaseActivation
1044
    :param gate_act: gate activiation type of gru
C
caoying03 已提交
1045
    :type gate_act: BaseActivation
1046 1047 1048 1049 1050
    :param gru_bias_attr: bias parameter attribute of gru layer,
                          False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False|None
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
1051 1052 1053 1054
    :return: the gru group.
    :rtype: LayerOutput
    """

Z
zhangjinchao01 已提交
1055 1056 1057
    def __gru_step__(ipt):
        return gru_unit(
            input=ipt,
1058
            memory_boot=memory_boot,
Z
zhangjinchao01 已提交
1059 1060 1061
            name=name,
            size=size,
            gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
1062
            gru_param_attr=gru_param_attr,
Z
zhangjinchao01 已提交
1063 1064
            act=act,
            gate_act=gate_act,
Y
Yu Yang 已提交
1065 1066
            gru_layer_attr=gru_layer_attr,
            naive=naive)
Z
zhangjinchao01 已提交
1067

Q
qijun 已提交
1068 1069 1070 1071 1072
    return recurrent_group(
        name='%s_recurrent_group' % name,
        step=__gru_step__,
        reverse=reverse,
        input=input)
Z
zhangjinchao01 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083


@wrap_name_default('simple_gru')
def simple_gru(input,
               size,
               name=None,
               reverse=False,
               mixed_param_attr=None,
               mixed_bias_param_attr=None,
               mixed_layer_attr=None,
               gru_bias_attr=None,
W
wangyang59 已提交
1084
               gru_param_attr=None,
Z
zhangjinchao01 已提交
1085 1086
               act=None,
               gate_act=None,
Y
Yu Yang 已提交
1087 1088
               gru_layer_attr=None,
               naive=False):
C
caoying03 已提交
1089
    """
1090
    You may see gru_step_layer, grumemory in layers.py, gru_unit, gru_group,
1091 1092 1093
    simple_gru in network.py. The reason why there are so many interfaces is
    that we have two ways to implement recurrent neural network. One way is to
    use one complete layer to implement rnn (including simple rnn, gru and lstm)
W
wangmeng28 已提交
1094
    with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But
1095
    the multiplication operation :math:`W x_t` is not computed in these layers.
1096
    See details in their interfaces in layers.py.
1097 1098 1099 1100 1101 1102
    The other implementation is to use an recurrent group which can ensemble a
    series of layers to compute rnn step by step. This way is flexible for
    attenion mechanism or other complex connections.

    - gru_step_layer: only compute rnn by one step. It needs an memory as input
      and can be used in recurrent group.
1103
    - gru_unit: a wrapper of gru_step_layer with memory.
1104 1105
    - gru_group: a GRU cell implemented by a combination of multiple layers in
      recurrent group.
1106
      But :math:`W x_t` is not done in group.
1107
    - gru_memory: a GRU cell implemented by one layer, which does same calculation
1108 1109
      with gru_group and is faster than gru_group.
    - simple_gru: a complete GRU implementation inlcuding :math:`W x_t` and
1110
      gru_group. :math:`W` contains :math:`W_r`, :math:`W_z` and :math:`W`, see
1111
      formula in grumemory.
1112

C
caoying03 已提交
1113 1114 1115 1116 1117 1118 1119
    The computational speed is that, grumemory is relatively better than
    gru_group, and gru_group is relatively better than simple_gru.

    The example usage is:

    ..  code-block:: python

1120
        gru = simple_gru(input=[layer1], size=256)
C
caoying03 已提交
1121

1122
    :param input: input layer.
C
caoying03 已提交
1123 1124 1125 1126 1127
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
1128
    :param reverse: process the input in a reverse order or not.
C
caoying03 已提交
1129
    :type reverse: bool
1130
    :param act: activiation type of gru
C
caoying03 已提交
1131
    :type act: BaseActivation
1132
    :param gate_act: gate activiation type of gru
C
caoying03 已提交
1133
    :type gate_act: BaseActivation
1134 1135 1136 1137 1138
    :param gru_bias_attr: bias parameter attribute of gru layer,
                          False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False|None
    :param gru_layer_attr: Extra attribute of the gru layer.
    :type gru_layer_attr: ExtraLayerAttribute
C
caoying03 已提交
1139 1140 1141
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1142 1143 1144 1145 1146
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_param_attr,
            layer_attr=mixed_layer_attr) as m:
Z
zhangjinchao01 已提交
1147 1148
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1149 1150 1151 1152 1153 1154
    return gru_group(
        name=name,
        size=size,
        input=m,
        reverse=reverse,
        gru_bias_attr=gru_bias_attr,
W
wangyang59 已提交
1155
        gru_param_attr=gru_param_attr,
Q
qijun 已提交
1156 1157
        act=act,
        gate_act=gate_act,
Y
Yu Yang 已提交
1158 1159
        gru_layer_attr=gru_layer_attr,
        naive=naive)
Z
zhangjinchao01 已提交
1160 1161


1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173
@wrap_name_default('simple_gru2')
def simple_gru2(input,
                size,
                name=None,
                reverse=False,
                mixed_param_attr=None,
                mixed_bias_attr=None,
                gru_param_attr=None,
                gru_bias_attr=None,
                act=None,
                gate_act=None,
                mixed_layer_attr=None,
Q
qijun 已提交
1174
                gru_cell_attr=None):
1175
    """
1176 1177
    simple_gru2 is the same with simple_gru, but using grumemory instead.
    Please refer to grumemory in layers.py for more detail about the math.
1178 1179 1180 1181 1182 1183 1184 1185
    simple_gru2 is faster than simple_gru.

    The example usage is:

    ..  code-block:: python

        gru = simple_gru2(input=[layer1], size=256)

1186
    :param input: input layer.
1187 1188 1189 1190 1191
    :type input: LayerOutput
    :param name: name of the gru group.
    :type name: basestring
    :param size: hidden size of the gru.
    :type size: int
1192
    :param reverse: process the input in a reverse order or not.
1193
    :type reverse: bool
1194
    :param act: activiation type of gru
1195
    :type act: BaseActivation
1196
    :param gate_act: gate activiation type of gru
1197
    :type gate_act: BaseActivation
W
wangmeng28 已提交
1198
    :param gru_bias_attr: bias parameter attribute of gru layer,
1199 1200
                          False means no bias, None means default bias.
    :type gru_bias_attr: ParameterAttribute|False|None
Q
qiaolongfei 已提交
1201 1202 1203
    :param gru_param_attr: param parameter attribute of gru layer,
                          None means default param.
    :type gru_param_attr: ParameterAttribute|None
1204 1205 1206
    :return: the gru group.
    :rtype: LayerOutput
    """
Q
qijun 已提交
1207 1208 1209 1210 1211
    with mixed_layer(
            name='%s_transform' % name,
            size=size * 3,
            bias_attr=mixed_bias_attr,
            layer_attr=mixed_layer_attr) as m:
1212 1213
        m += full_matrix_projection(input=input, param_attr=mixed_param_attr)

Q
qijun 已提交
1214 1215 1216 1217 1218 1219 1220 1221 1222
    return grumemory(
        name=name,
        input=m,
        reverse=reverse,
        bias_attr=gru_bias_attr,
        param_attr=gru_param_attr,
        act=act,
        gate_act=gate_act,
        layer_attr=gru_cell_attr)
1223 1224 1225


@wrap_name_default("bidirectional_gru")
Q
qijun 已提交
1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249
def bidirectional_gru(input,
                      size,
                      name=None,
                      return_seq=False,
                      fwd_mixed_param_attr=None,
                      fwd_mixed_bias_attr=None,
                      fwd_gru_param_attr=None,
                      fwd_gru_bias_attr=None,
                      fwd_act=None,
                      fwd_gate_act=None,
                      fwd_mixed_layer_attr=None,
                      fwd_gru_cell_attr=None,
                      bwd_mixed_param_attr=None,
                      bwd_mixed_bias_attr=None,
                      bwd_gru_param_attr=None,
                      bwd_gru_bias_attr=None,
                      bwd_act=None,
                      bwd_gate_act=None,
                      bwd_mixed_layer_attr=None,
                      bwd_gru_cell_attr=None,
                      last_seq_attr=None,
                      first_seq_attr=None,
                      concat_attr=None,
                      concat_act=None):
1250 1251
    """
    A bidirectional_gru is a recurrent unit that iterates over the input
1252
    sequence both in forward and backward orders, and then concatenate two
1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268
    outputs to form a final output. However, concatenation of two outputs
    is not the only way to form the final output, you can also, for example,
    just add them together.

    The example usage is:

    ..  code-block:: python

        bi_gru = bidirectional_gru(input=[input1], size=512)

    :param name: bidirectional gru layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: gru layer size.
    :type size: int
1269
    :param return_seq: If set False, the last time step of output are
1270
                       concatenated and returned.
W
wangmeng28 已提交
1271
                       If set True, the entire output sequences in forward
1272
                       and backward directions are concatenated and returned.
1273 1274 1275 1276 1277 1278
    :type return_seq: bool
    :return: LayerOutput object.
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1279 1280 1281 1282 1283 1284
    fw = simple_gru2(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
1285

Q
qijun 已提交
1286 1287 1288 1289 1290 1291 1292
    bw = simple_gru2(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
1293 1294

    if return_seq:
Q
qijun 已提交
1295 1296
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
1297
    else:
Q
qijun 已提交
1298 1299 1300 1301 1302 1303 1304 1305 1306
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
1307 1308


Z
zhangjinchao01 已提交
1309
@wrap_name_default("bidirectional_lstm")
Q
qijun 已提交
1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333
def bidirectional_lstm(input,
                       size,
                       name=None,
                       return_seq=False,
                       fwd_mat_param_attr=None,
                       fwd_bias_param_attr=None,
                       fwd_inner_param_attr=None,
                       fwd_act=None,
                       fwd_gate_act=None,
                       fwd_state_act=None,
                       fwd_mixed_layer_attr=None,
                       fwd_lstm_cell_attr=None,
                       bwd_mat_param_attr=None,
                       bwd_bias_param_attr=None,
                       bwd_inner_param_attr=None,
                       bwd_act=None,
                       bwd_gate_act=None,
                       bwd_state_act=None,
                       bwd_mixed_layer_attr=None,
                       bwd_lstm_cell_attr=None,
                       last_seq_attr=None,
                       first_seq_attr=None,
                       concat_attr=None,
                       concat_act=None):
Z
zhangjinchao01 已提交
1334
    """
C
caoying03 已提交
1335
    A bidirectional_lstm is a recurrent unit that iterates over the input
1336 1337
    sequence both in forward and backward orders, and then concatenate two
    outputs to form a final output. However, concatenation of two outputs
C
caoying03 已提交
1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349
    is not the only way to form the final output, you can also, for example,
    just add them together.

    Please refer to  **Neural Machine Translation by Jointly Learning to Align
    and Translate** for more details about the bidirectional lstm.
    The link goes as follows:
    .. _Link: https://arxiv.org/pdf/1409.0473v3.pdf

    The example usage is:

    ..  code-block:: python

1350
        bi_lstm = bidirectional_lstm(input=[input1], size=512)
Z
zhangjinchao01 已提交
1351 1352 1353 1354 1355 1356 1357

    :param name: bidirectional lstm layer name.
    :type name: basestring
    :param input: input layer.
    :type input: LayerOutput
    :param size: lstm layer size.
    :type size: int
1358
    :param return_seq: If set False, the last time step of output are
C
caoying03 已提交
1359
                       concatenated and returned.
W
wangmeng28 已提交
1360
                       If set True, the entire output sequences in forward
1361
                       and backward directions are concatenated and returned.
Z
zhangjinchao01 已提交
1362
    :type return_seq: bool
1363
    :return: LayerOutput object.
Z
zhangjinchao01 已提交
1364 1365 1366 1367
    :rtype: LayerOutput
    """
    args = locals()

Q
qijun 已提交
1368 1369 1370 1371 1372 1373
    fw = simple_lstm(
        name='%s_fw' % name,
        input=input,
        size=size,
        **dict((k[len('fwd_'):], v) for k, v in args.iteritems()
               if k.startswith('fwd_')))
Z
zhangjinchao01 已提交
1374

Q
qijun 已提交
1375 1376 1377 1378 1379 1380 1381
    bw = simple_lstm(
        name="%s_bw" % name,
        input=input,
        size=size,
        reverse=True,
        **dict((k[len('bwd_'):], v) for k, v in args.iteritems()
               if k.startswith('bwd_')))
Z
zhangjinchao01 已提交
1382 1383

    if return_seq:
Q
qijun 已提交
1384 1385
        return concat_layer(
            name=name, input=[fw, bw], layer_attr=concat_attr, act=concat_act)
Z
zhangjinchao01 已提交
1386
    else:
Q
qijun 已提交
1387 1388 1389 1390 1391 1392 1393 1394 1395
        fw_seq = last_seq(
            name="%s_fw_last" % name, input=fw, layer_attr=last_seq_attr)
        bw_seq = first_seq(
            name="%s_bw_last" % name, input=bw, layer_attr=first_seq_attr)
        return concat_layer(
            name=name,
            input=[fw_seq, bw_seq],
            layer_attr=concat_attr,
            act=concat_act)
Z
zhangjinchao01 已提交
1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407


@wrap_name_default()
@wrap_act_default(param_names=['weight_act'], act=TanhActivation())
def simple_attention(encoded_sequence,
                     encoded_proj,
                     decoder_state,
                     transform_param_attr=None,
                     softmax_param_attr=None,
                     weight_act=None,
                     name=None):
    """
1408
    Calculate and return a context vector with attention mechanism.
1409
    Size of the context vector equals to size of the encoded_sequence.
Z
zhangjinchao01 已提交
1410 1411

    ..  math::
L
luotao02 已提交
1412 1413 1414 1415 1416

        a(s_{i-1},h_{j}) & = v_{a}f(W_{a}s_{t-1} + U_{a}h_{j})

        e_{i,j} & = a(s_{i-1}, h_{j})

1417
        a_{i,j} & = \\frac{exp(e_{i,j})}{\\sum_{k=1}^{T_x}{exp(e_{i,k})}}
L
luotao02 已提交
1418 1419

        c_{i} & = \\sum_{j=1}^{T_{x}}a_{i,j}h_{j}
Z
zhangjinchao01 已提交
1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430

    where :math:`h_{j}` is the jth element of encoded_sequence,
    :math:`U_{a}h_{j}` is the jth element of encoded_proj
    :math:`s_{i-1}` is decoder_state
    :math:`f` is weight_act, and is set to tanh by default.

    Please refer to **Neural Machine Translation by Jointly Learning to
    Align and Translate** for more details. The link is as follows:
    https://arxiv.org/abs/1409.0473.

    The example usage is:
L
luotao02 已提交
1431

Z
zhangjinchao01 已提交
1432 1433 1434 1435 1436 1437 1438 1439 1440
    ..  code-block:: python

        context = simple_attention(encoded_sequence=enc_seq,
                                   encoded_proj=enc_proj,
                                   decoder_state=decoder_prev,)

    :param name: name of the attention model.
    :type name: basestring
    :param softmax_param_attr: parameter attribute of sequence softmax
1441
                               that is used to produce attention weight.
Z
zhangjinchao01 已提交
1442
    :type softmax_param_attr: ParameterAttribute
1443 1444
    :param weight_act: activation of the attention model.
    :type weight_act: BaseActivation
Z
zhangjinchao01 已提交
1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460
    :param encoded_sequence: output of the encoder
    :type encoded_sequence: LayerOutput
    :param encoded_proj: attention weight is computed by a feed forward neural
                         network which has two inputs : decoder's hidden state
                         of previous time step and encoder's output.
                         encoded_proj is output of the feed-forward network for
                         encoder's output. Here we pre-compute it outside
                         simple_attention for speed consideration.
    :type encoded_proj: LayerOutput
    :param decoder_state: hidden state of decoder in previous time step
    :type decoder_state: LayerOutput
    :param transform_param_attr: parameter attribute of the feed-forward
                                network that takes decoder_state as inputs to
                                compute attention weight.
    :type transform_param_attr: ParameterAttribute
    :return: a context vector
R
ranqiu 已提交
1461
    :rtype: LayerOutput
Z
zhangjinchao01 已提交
1462 1463 1464 1465 1466
    """
    assert encoded_proj.size == decoder_state.size
    proj_size = encoded_proj.size

    with mixed_layer(size=proj_size, name="%s_transform" % name) as m:
Q
qijun 已提交
1467 1468
        m += full_matrix_projection(
            decoder_state, param_attr=transform_param_attr)
Z
zhangjinchao01 已提交
1469

Q
qijun 已提交
1470 1471
    expanded = expand_layer(
        input=m, expand_as=encoded_sequence, name='%s_expand' % name)
Z
zhangjinchao01 已提交
1472

Q
qijun 已提交
1473 1474
    with mixed_layer(
            size=proj_size, act=weight_act, name="%s_combine" % name) as m:
Z
zhangjinchao01 已提交
1475 1476 1477 1478 1479
        m += identity_projection(expanded)
        m += identity_projection(encoded_proj)

    # sequence softmax is used to normalize similarities between decoder state
    # and encoder outputs into a distribution
Q
qijun 已提交
1480 1481 1482 1483 1484 1485 1486
    attention_weight = fc_layer(
        input=m,
        size=1,
        act=SequenceSoftmaxActivation(),
        param_attr=softmax_param_attr,
        name="%s_softmax" % name,
        bias_attr=False)
Z
zhangjinchao01 已提交
1487

Q
qijun 已提交
1488 1489 1490 1491
    scaled = scaling_layer(
        weight=attention_weight,
        input=encoded_sequence,
        name='%s_scaling' % name)
Z
zhangjinchao01 已提交
1492

Q
qijun 已提交
1493 1494
    return pooling_layer(
        input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)
Z
zhangjinchao01 已提交
1495 1496


R
ranqiu 已提交
1497 1498
@wrap_name_default()
def dot_product_attention(encoded_sequence,
1499
                          attended_sequence,
R
ranqiu 已提交
1500 1501 1502 1503 1504
                          transformed_state,
                          softmax_param_attr=None,
                          name=None):
    """
    Calculate and return a context vector with dot-product attention mechanism.
1505
    The dimension of the context vector equals to that of the attended_sequence.
R
ranqiu 已提交
1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517

    ..  math::

        a(s_{i-1},h_{j}) & = s_{i-1}^\mathrm{T} h_{j}

        e_{i,j} & = a(s_{i-1}, h_{j})

        a_{i,j} & = \\frac{exp(e_{i,j})}{\\sum_{k=1}^{T_x}{exp(e_{i,k})}}

        c_{i} & = \\sum_{j=1}^{T_{x}}a_{i,j}z_{j}

    where :math:`h_{j}` is the jth element of encoded_sequence,
1518 1519
    :math:`z_{j}` is the jth element of attended_sequence,
    :math:`s_{i-1}` is transformed_state.
R
ranqiu 已提交
1520 1521 1522 1523 1524 1525

    The example usage is:

    ..  code-block:: python

        context = dot_product_attention(encoded_sequence=enc_seq,
1526
                                        attended_sequence=att_seq,
R
ranqiu 已提交
1527 1528
                                        transformed_state=state,)

1529 1530
    :param name: A prefix attached to the name of each layer that defined inside
                 the dot_product_attention.
R
ranqiu 已提交
1531
    :type name: basestring
1532
    :param softmax_param_attr: The parameter attribute of sequence softmax
R
ranqiu 已提交
1533 1534
                               that is used to produce attention weight.
    :type softmax_param_attr: ParameterAttribute
1535
    :param encoded_sequence: The output hidden vectors of the encoder.
R
ranqiu 已提交
1536
    :type encoded_sequence: LayerOutput
1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547
    :param attended_sequence: The attention weight is computed by a feed forward neural
                              network which has two inputs : decoder's transformed hidden
                              state of previous time step and encoder's output.
                              attended_sequence is the sequence to be attended.
    :type attended_sequence: LayerOutput
    :param transformed_state: The transformed hidden state of decoder in previous time step.
                              Since the dot-product operation will be performed on it and the
                              encoded_sequence, their dimensions must be equal. For flexibility,
                              we suppose transformations of the decoder's hidden state have been
                              done outside dot_product_attention and no more will be performed
                              inside. Then users can use either the original or transformed one.
R
ranqiu 已提交
1548
    :type transformed_state: LayerOutput
1549
    :return: The context vector.
R
ranqiu 已提交
1550 1551 1552 1553 1554 1555
    :rtype: LayerOutput
    """
    assert transformed_state.size == encoded_sequence.size

    expanded = expand_layer(
        input=transformed_state,
R
ranqiu 已提交
1556
        expand_as=encoded_sequence,
R
ranqiu 已提交
1557 1558
        name='%s_expand' % name)

R
ranqiu 已提交
1559 1560
    m = dot_prod_layer(
        input1=expanded, input2=encoded_sequence, name='%s_dot-product' % name)
R
ranqiu 已提交
1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571

    attention_weight = fc_layer(
        input=m,
        size=1,
        act=SequenceSoftmaxActivation(),
        param_attr=softmax_param_attr,
        name="%s_softmax" % name,
        bias_attr=False)

    scaled = scaling_layer(
        weight=attention_weight,
1572
        input=attended_sequence,
R
ranqiu 已提交
1573 1574 1575 1576 1577 1578
        name='%s_scaling' % name)

    return pooling_layer(
        input=scaled, pooling_type=SumPooling(), name="%s_pooling" % name)


R
ranqiu 已提交
1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
@wrap_name_default()
def multi_head_attention(query,
                         key,
                         value,
                         key_proj_size,
                         value_proj_size,
                         head_num,
                         attention_type,
                         softmax_param_attr=None,
                         name=None):
    """
    Calculate and return a context vector with dot-product attention mechanism.
    The dimension of the context vector equals to value_proj_size * head_num.

    Please refer to **Attention Is All You Need** for more details. The link is
    as follows:
    https://arxiv.org/abs/1706.03762.

    The example usage is:

    ..  code-block:: python

        context = multi_head_attention(query=decoder_state,
                                       key=enc_seq,
                                       value=enc_seq,
                                       key_proj_size=64,
                                       value_pro_size=64,
                                       head_num=8,
                                       attention_type='dot-product attention')

    :param name: A prefix attached to the name of each layer that defined inside
                 the multi_head_attention.
    :type name: basestring
    :param softmax_param_attr: The parameter attribute of sequence softmax
                               that is used to produce attention weight.
    :type softmax_param_attr: ParameterAttribute
    :param query: query is used to calculate attention weights over values at current step.
    :type query: LayerOutput
    :param key: key is used to calculate the attention weight of the corresponding value.
    :type key: LayerOutput
    :param value: value is the sequence to be attended.
    :type value: LayerOutput
    :param key_proj_size: The dimension of the linear projection performed on key and query.
    :type key_proj_size: int
    :param value_proj_size: The dimension of the linear projection performed on value.
    :type value_proj_size: int
    :param head_num: The number of attention heads.
    :type head_num: int
    :param attention_type: The type of the attention mechanism used in each attention
R
ranqiu 已提交
1628
                           heads. Now, we only support scaled dot-product attention and
R
ranqiu 已提交
1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655
                           additive attention.
    :type attention_type: basestring
    :return: The context vector.
    :rtype: LayerOutput
    """
    assert attention_type in ['dot-product attention', 'additive attention']

    with mixed_layer(
            size=key_proj_size * head_num,
            name='%s_query_proj' % name) as query_proj:
        query_proj += full_matrix_projection(query)
    query_proj = expand_layer(input=query_proj, expand_as=key)

    with mixed_layer(
            size=key_proj_size * head_num,
            name='%s_key_proj' % name) as key_proj:
        key_proj += full_matrix_projection(key)

    with mixed_layer(
            size=value_proj_size * head_num,
            name='%s_value_proj' % name) as value_proj:
        value_proj += full_matrix_projection(value)

    head_list = []
    for i in range(head_num):
        with mixed_layer(size=key_proj_size) as sub_query_proj:
            sub_query_proj += identity_projection(
R
ranqiu 已提交
1656
                query_proj, offset=key_proj_size * i, size=key_proj_size)
R
ranqiu 已提交
1657 1658 1659

        with mixed_layer(size=key_proj_size) as sub_key_proj:
            sub_key_proj += identity_projection(
R
ranqiu 已提交
1660
                key_proj, offset=key_proj_size * i, size=key_proj_size)
R
ranqiu 已提交
1661 1662 1663

        with mixed_layer(size=value_proj_size) as sub_value_proj:
            sub_value_proj += identity_projection(
R
ranqiu 已提交
1664
                value_proj, offset=value_proj_size * i, size=value_proj_size)
R
ranqiu 已提交
1665 1666

        if attention_type == 'dot-product attention':
R
ranqiu 已提交
1667 1668 1669
            m = dot_prod_layer(
                input1=sub_query_proj,
                input2=sub_key_proj,
R
ranqiu 已提交
1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701
                name='%s_dot-product_%d' % (name, i))
            m = slope_intercept_layer(
                input=m,
                slope=math.sqrt(1.0 / key_proj_size),
                name='%s_dot-product_scaling_%d' % (name, i))
        else:
            with mixed_layer(
                    size=key_proj_size,
                    act=TanhActivation(),
                    name='%s_combine_%d' % (name, i)) as m:
                m += identity_projection(sub_query_proj)
                m += identity_projection(sub_key_proj)

        attention_weight = fc_layer(
            input=m,
            size=1,
            act=SequenceSoftmaxActivation(),
            param_attr=softmax_param_attr,
            name="%s_softmax_%d" % (name, i),
            bias_attr=False)

        scaled = scaling_layer(
            weight=attention_weight,
            input=sub_value_proj,
            name='%s_scaling_%d' % (name, i))
        head = pooling_layer(
            input=scaled,
            pooling_type=SumPooling(),
            name="%s_pooling_%d" % (name, i))

        head_list.append(head)

R
ranqiu 已提交
1702
    attended = concat_layer(head_list)
R
ranqiu 已提交
1703 1704 1705 1706

    return attended


1707 1708 1709 1710 1711 1712 1713 1714
def inputs(layers, *args):
    """
    Declare the inputs of network. The order of input should be as same as
    the data provider's return order.

    :param layers: Input Layers.
    :type layers: list|tuple|LayerOutput.
    :return:
Z
zhangjinchao01 已提交
1715 1716
    """

1717 1718 1719 1720
    if isinstance(layers, LayerOutput) or isinstance(layers, basestring):
        layers = [layers]
    if len(args) != 0:
        layers.extend(args)
Z
zhangjinchao01 已提交
1721

Z
Zhaolong Xing 已提交
1722
    Inputs(*[l.name for l in layers])
1723 1724 1725 1726


def outputs(layers, *args):
    """
1727
    Declare the outputs of network. If user has not defined the inputs of
1728 1729 1730
    network, this method will calculate the input order by dfs travel.

    :param layers: Output layers.
Z
zhangjinchao01 已提交
1731 1732 1733 1734
    :type layers: list|tuple|LayerOutput
    :return:
    """

1735 1736
    traveled = set()

Z
zhangjinchao01 已提交
1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747
    def __dfs_travel__(layer,
                       predicate=lambda x: x.layer_type == LayerType.DATA):
        """
        DFS LRV Travel for output layer.

        The return order is define order for data_layer in this leaf node.

        :param layer:
        :type layer: LayerOutput
        :return:
        """
1748 1749 1750 1751 1752
        if layer in traveled:
            return []
        else:
            traveled.add(layer)

Z
zhangjinchao01 已提交
1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765
        assert isinstance(layer, LayerOutput), "layer is %s" % (layer)
        retv = []
        if layer.parents is not None:
            for p in layer.parents:
                retv.extend(__dfs_travel__(p, predicate))

        if predicate(layer):
            retv.append(layer)
        return retv

    if isinstance(layers, LayerOutput):
        layers = [layers]

1766 1767 1768
    if len(args) != 0:
        layers.extend(args)

Z
zhangjinchao01 已提交
1769
    assert len(layers) > 0
1770 1771

    if HasInputsSet():  # input already set
Z
Zhaolong Xing 已提交
1772
        Outputs(*[l.name for l in layers])
1773 1774
        return  # just return outputs.

Z
zhangjinchao01 已提交
1775
    if len(layers) != 1:
1776
        logger.warning("`outputs` routine try to calculate network's"
Z
zhangjinchao01 已提交
1777 1778 1779 1780 1781 1782 1783
                       " inputs and outputs order. It might not work well."
                       "Please see follow log carefully.")
    inputs = []
    outputs_ = []
    for each_layer in layers:
        assert isinstance(each_layer, LayerOutput)
        inputs.extend(__dfs_travel__(each_layer))
Q
qijun 已提交
1784 1785 1786
        outputs_.extend(
            __dfs_travel__(each_layer,
                           lambda x: x.layer_type == LayerType.COST))
Z
zhangjinchao01 已提交
1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803

    # Currently, we got each leaf node's inputs order, output order.
    # We merge them together.

    final_inputs = []
    final_outputs = []

    for each_input in inputs:
        assert isinstance(each_input, LayerOutput)
        if each_input.name not in final_inputs:
            final_inputs.append(each_input.name)

    for each_output in outputs_:
        assert isinstance(each_output, LayerOutput)
        if each_output.name not in final_outputs:
            final_outputs.append(each_output.name)

Q
qijun 已提交
1804
    logger.info("".join(["The input order is [", ", ".join(final_inputs), "]"]))
1805 1806 1807 1808

    if len(final_outputs) == 0:
        final_outputs = map(lambda x: x.name, layers)

Q
qijun 已提交
1809 1810
    logger.info("".join(
        ["The output order is [", ", ".join(final_outputs), "]"]))
Z
zhangjinchao01 已提交
1811 1812

    Inputs(*final_inputs)
1813
    Outputs(*final_outputs)