softmax_op.cc 5.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

Q
Qiao Longfei 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

Q
Qiao Longfei 已提交
7 8 9 10 11 12 13
    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/softmax_op.h"
16 17 18 19

namespace paddle {
namespace operators {

D
dongzhihong 已提交
20
class SoftmaxOp : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
21 22 23
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

24
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
25 26
    PADDLE_ENFORCE(ctx->HasInput("X"),
                   "Input(X) of SoftmaxOp should not be null.");
F
fengjiayi 已提交
27 28
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of SoftmaxOp should not be null.");
Q
Qiao Longfei 已提交
29 30 31

    auto x_dims = ctx->GetInputDim("X");
    PADDLE_ENFORCE(x_dims.size() == 2UL,
C
caoying03 已提交
32
                   "The input of softmax op must be a matrix.");
F
fengjiayi 已提交
33
    ctx->SetOutputDim("Out", x_dims);
Q
Qiao Longfei 已提交
34
    ctx->ShareLoD("X", /*->*/ "Out");
35
  }
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    bool use_cudnn = ctx.Attr<bool>("use_cudnn");
    bool runtime_cudnn_support = false;
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
    std::string data_format = ctx.Attr<std::string>("data_format");
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
        framework::StringToDataLayout(data_format), library_);
  }
59 60
};

D
dongzhihong 已提交
61
class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker {
62
 public:
63
  SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker)
64
      : OpProtoAndCheckerMaker(proto, op_checker) {
65
    AddInput("X",
C
caoying03 已提交
66 67
             "The input tensor of softmax. "
             "2-D with shape [batch_size, input_feature_dimensions].");
F
fengjiayi 已提交
68
    AddOutput("Out", "The normalized values with the same shape as X.");
69 70 71 72 73 74 75 76 77 78 79
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default false) Only used in cudnn kernel, need install cudnn")
        .SetDefault(false);
    AddAttr<std::string>(
        "data_format",
        "(string, default NCHW) Only used in "
        "An optional string from: \"NHWC\", \"NCHW\". "
        "Defaults to \"NHWC\". Specify the data format of the output data, "
        "the input will be transformed automatically. ")
        .SetDefault("AnyLayout");
C
caoying03 已提交
80
    AddComment(R"DOC(
81 82 83
Softmax Operator.

The input of the softmax operator is a 2-D tensor with shape N x K (N is the
C
caoying03 已提交
84 85 86 87 88
batch_size, K is the dimension of input feature). The output tensor has the
same shape as the input tensor.

For each row of the input tensor, the softmax operator squashes the
K-dimensional vector of arbitrary real values to a K-dimensional vector of real
89 90 91 92 93 94
values in the range [0, 1] that add up to 1.
It computes the exponential of the given dimension and the sum of exponential
values of all the other dimensions in the K-dimensional vector input.
Then the ratio of the exponential of the given dimension and the sum of
exponential values of all the other dimensions is the output of the softmax
operator.
C
caoying03 已提交
95

96
For each row $i$ and each column $j$ in Input(X), we have:
F
fengjiayi 已提交
97
    $$Out[i, j] = \frac{\exp(X[i, j])}{\sum_j(exp(X[i, j])}$$
C
caoying03 已提交
98 99

)DOC");
100 101 102
  }
};

D
dongzhihong 已提交
103
class SoftmaxOpGrad : public framework::OperatorWithKernel {
Y
Yu Yang 已提交
104 105 106
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

107
  void InferShape(framework::InferShapeContext* ctx) const override {
F
fengjiayi 已提交
108 109 110 111 112 113
    PADDLE_ENFORCE(ctx->HasInput("Out"), "Input(Out) should be not null.");
    PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
                   "Input(Out@GRAD) should be not null.");
    PADDLE_ENFORCE_EQ(ctx->GetInputDim("Out"),
                      ctx->GetInputDim(framework::GradVarName("Out")),
                      "Input(Out) and its gradients should have a same shape.");
114

Q
Qiao Longfei 已提交
115
    ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
D
dongzhihong 已提交
116
  }
117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    // choose cudnn kernel if the runtime supported.
    bool use_cudnn = ctx.Attr<bool>("use_cudnn");
    bool runtime_cudnn_support = false;
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(ctx.GetPlace())) {
      auto& dev_ctx =
          ctx.template device_context<platform::CUDADeviceContext>();
      runtime_cudnn_support = dev_ctx.cudnn_handle() != nullptr ? true : false;
    }
#endif
    framework::LibraryType library_ = framework::LibraryType::kPlain;
    if (use_cudnn && runtime_cudnn_support) {
      library_ = framework::LibraryType::kCUDNN;
    }
    std::string data_format = ctx.Attr<std::string>("data_format");
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<Tensor>("X")->type()), ctx.GetPlace(),
        framework::StringToDataLayout(data_format), library_);
  }
D
dongzhihong 已提交
140 141
};

142 143 144
}  // namespace operators
}  // namespace paddle

D
dongzhihong 已提交
145
namespace ops = paddle::operators;
D
dongzhihong 已提交
146

147 148
REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad,
            ops::SoftmaxOpGrad);
D
dongzhihong 已提交
149
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
150 151 152 153
    softmax, ops::SoftmaxKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
    softmax_grad,
    ops::SoftmaxGradKernel<paddle::platform::CPUDeviceContext, float>);