async_executor.py 8.6 KB
Newer Older
W
Wang Guibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import numpy as np
import contextlib
import six
from .framework import Program, default_main_program, Variable
from . import core
from .executor import global_scope, Executor
from paddle.fluid.proto import data_feed_pb2
from google.protobuf import text_format
from . import io
from .data_feed_desc import DataFeedDesc
H
heqiaozhi 已提交
27
from .distributed import ps_instance
H
heqiaozhi 已提交
28
from .contrib.utils import hdfs_utils as hdfs
W
Wang Guibao 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

__all__ = ['AsyncExecutor']


class AsyncExecutor(object):
    """
    An asynchronous Executor in Python. Through exploiting the power of
    multi-core processor and data queueing, AsyncExecutor makes data reading
    and cosuming decoupled, each run in multiple threads in parallel.

    Instead of reading data in python side, AsyncExecutor accepts a training
    file list, which will be retrieved in C++, then training inputs will be
    read, parsed and fed to training network within C++ code.

    AsyncExecutor is in active development and the API might change in the near
    future.

    Example:
        >>> data_feed = fluid.DataFeedDesc('data.proto')
        >>> startup_program = fluid.default_startup_program()
        >>> main_program = fluid.default_main_program()
        >>> filelist = ["train_data/part-%d" % i for i in range(100)]
        >>> thread_num = len(filelist) / 4
        >>>
        >>> place = fluid.CPUPlace()
        >>> async_executor = fluid.AsyncExecutor(place)
        >>>
        >>> async_executor.run_startup_program(startup_program)
        >>>
        >>> epoch = 10
        >>> for i in range(epoch):
        >>>     async_executor.run(main_program,
        >>>                        data_feed,
        >>>                        filelist,
        >>>                        thread_num,
        >>>                        [acc],
        >>>                        debug=False)

    Args:
        place(fluid.CPUPlace|None): indicate the executor run on which device.
                                   Only CPUPlace supported

    Note:
        For debugging complicated network in parallel-GPUs, you can test it
        on the executor. They has the exactly same arguments, and expected
        the same results.

    Note: Only running on CPUPlace supported.
    """

    def __init__(self, place=None):
        if place is None:
            place = core.CPUPlace()
        if not isinstance(place, core.CPUPlace):
            raise ValueError("AsyncExecutor only supports CPU device")

        p = core.Place()
        p.set_place(place)

        scope = global_scope()
        self.executor = core.AsyncExecutor(scope, p)

H
heqiaozhi 已提交
91
    def run(self, program, data_feed, filelist, thread_num, fetch, mode="", debug=False):
W
Wang Guibao 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
        """
        Run program by this AsyncExecutor. Training dataset will be in filelist.
        Users can also inspect certain variables by naming them in parameter
        :code:`fetch`, like in fluid.Executor. Unlike fluid.Executor, however,
        AsyncExecutor doesn't return fetched variables, instead, it will dump
        the values of each fetched variable to stdandard output.

        Running the dataset will be on multiple threads, within each a thread
        local scope will be created, then all OPs also created in that scope.
        Parameters are updated by all the OPs simultaneously.

        Args:
            program(Program): the program that need to run, if not provied,
                              then default_main_program will be used.
            data_feed(DataFeedDesc): A DataFeedDesc object
            filelist(str): a file containing the training dataset file list
            thread_num(int): number of concurrent training threads. See
                             :code:`Note` for how to set this properly
            fetch(str|list): the var name or a list of var names to inspect
            debug(bool): When set to True, fetch vars will be printed to
                         standard output after each minibatch

        Note:
            the executor will run all operators in the program but not only
            the operators dependent by the fetch_list.

        Note:
            Running AsyncExecutor will be on multiple threads, each bound to a
            CPU core. To achieve best performance, it's suggested to set thread
            num to be equal or slightly less than that of CPU cores.
        """
        if program is None:
            program = default_main_program()
        program_desc = program.desc

        if data_feed is None:
            raise ValueError('ValueError: data_feed should be provided')

        if filelist is None:
            raise ValueError('ValueError: filelist should be provided')

        if isinstance(filelist, str):
            filelist = [filelist]

        if not isinstance(thread_num, int):
            raise TypeError('TypeError: thread_num should be a positive number')

        if fetch is not None:
            if isinstance(fetch, Variable):
                fetch = [fetch]
            fetch_var_names = [var.name for var in fetch]
            for fetch_var in fetch:
                shape = fetch_var.shape
                if shape[len(shape) - 1] != 1:
                    raise AssertionError(
                        "%s: Fetch variable has wrong shape. Only varibles "
                        "with the last dimension size 1 supported." %
                        (fetch_var.name))

        self.executor.run_from_files(program_desc,
                                     data_feed.desc(), filelist, thread_num,
H
heqiaozhi 已提交
153
                                     fetch_var_names, mode, debug)
H
heqiaozhi 已提交
154

H
heqiaozhi 已提交
155
    def download_data(self, afs_path, local_path, fs_default_name, ugi, process_num=12):
H
heqiaozhi 已提交
156 157
        #hadoop_home = "$HADOOP_HOME"
        hadoop_home = "~/tools/hadoop-xingtian/hadoop/"
H
heqiaozhi 已提交
158 159 160 161 162 163 164 165 166 167 168 169 170 171

        configs = {
            "fs.default.name": fs_default_name,
            "hadoop.job.ugi": ugi
        }

        client = hdfs.HDFSClient(hadoop_home, configs)
        downloads = hdfs.multi_download(
            client,
            afs_path, 
            local_path, 
            self.instance.get_worker_index(),
            self.instance.get_node_cnt() / 2,
            multi_processes=process_num)
H
heqiaozhi 已提交
172
        self.instance.barrier_all() #wait for download_data #TODO only barriere worker
173

H
heqiaozhi 已提交
174 175 176
    def config_distributed_nodes(self):
        self.instance = ps_instance.PaddlePSInstance(1, 2)
        return self.instance
H
heqiaozhi 已提交
177

178 179 180 181
        # get total rank
        # get rank index
        # get iplists
        # get hadoop info
H
heqiaozhi 已提交
182 183 184 185 186
        pass

    def get_instance(self):
        return self.instance

H
heqiaozhi 已提交
187 188 189 190 191
    def stop_server(self):
        self.instance.barrier_all() #worker do all things
        if self.instance.is_first_worker():
            self.executor.stop_server()
        self.instance.barrier_all() #sync
H
heqiaozhi 已提交
192

H
heqiaozhi 已提交
193 194 195 196 197 198 199 200 201
    def init_server(self, dist_desc):
        self.executor.init_server(dist_desc, self.instance._rankid)
        ip = self.executor.start_server()
        self.instance.set_ip(ip)
        self.instance.barrier_all() #wait all server start
        ips = self.instance.gather_ips()
        self.executor.gather_servers(ips, self.instance.get_node_cnt())
        self.instance.barrier_all() #wait all worker start
        self.instance.barrier_all() #wait init model
H
heqiaozhi 已提交
202
        self.instance.barrier_all() #wait for download_data #TODO remove this after only barrier worker
H
heqiaozhi 已提交
203
        self.instance.barrier_all() #wait worker do all things 
H
heqiaozhi 已提交
204
        self.instance.barrier_all() #sync
H
heqiaozhi 已提交
205

H
heqiaozhi 已提交
206 207 208 209 210
    def init_worker(self, dist_desc, startup_program):
        place = core.CPUPlace()
        executor = Executor(place)
        executor.run(startup_program)

H
heqiaozhi 已提交
211 212 213 214 215 216 217
        self.instance.barrier_all() #wait all server start
        ips = self.instance.gather_ips()
        self.executor.init_worker(dist_desc, ips, self.instance.get_node_cnt(), self.instance._rankid)
        self.instance.barrier_all() #wait all worker start
        if self.instance.is_first_worker():
            self.executor.init_model()
        self.instance.barrier_all() #wait init model
H
heqiaozhi 已提交
218
       
219 220 221 222 223 224
    def init_model(self):
        self.executor.init_model()

    def save_model(self, save_path):
        self.executor.save_model(save_path)