activation_op.h 29.4 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
Luo Tao 已提交
2 3 4 5 6 7 8 9 10
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
    http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Q
qijun 已提交
11 12

#pragma once
13 14
#include <utility>
#include <vector>
15

Y
Yi Wang 已提交
16 17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
19
#include "paddle/fluid/platform/float16.h"
Q
qijun 已提交
20

21 22 23 24
#ifdef PADDLE_WITH_MKLDNN
#include "paddle/fluid/platform/mkldnn_helper.h"
#endif

Q
qijun 已提交
25 26 27
namespace paddle {
namespace operators {

Q
QI JUN 已提交
28
template <typename DeviceContext, typename Functor>
29 30
class ActivationKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
31
 public:
32 33
  using T = typename Functor::ELEMENT_TYPE;

Q
qijun 已提交
34
  void Compute(const framework::ExecutionContext& context) const override {
Y
Update  
Yang Yu 已提交
35 36 37 38 39 40 41 42 43 44
    auto& X = detail::Ref(context.Input<framework::Tensor>("X"),
                          "Cannot get input tensor X, variable name = %s",
                          context.op().Input("X"));

    auto& Out = detail::Ref(context.Output<framework::Tensor>("Out"),
                            "Cannot get output tensor Out, variable name = %s",
                            context.op().Output("Out"));
    Out.mutable_data<T>(context.GetPlace());
    auto x = framework::EigenVector<T>::Flatten(X);
    auto out = framework::EigenVector<T>::Flatten(Out);
Q
QI JUN 已提交
45 46
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
47
    Functor functor;
48 49 50 51 52

    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
53
    functor(*place, x, out);
Q
qijun 已提交
54 55 56
  }
};

Q
QI JUN 已提交
57
template <typename DeviceContext, typename Functor>
58 59
class ActivationGradKernel
    : public framework::OpKernel<typename Functor::ELEMENT_TYPE> {
Q
qijun 已提交
60
 public:
61
  using T = typename Functor::ELEMENT_TYPE;
Q
qijun 已提交
62 63
  void Compute(const framework::ExecutionContext& context) const override {
    auto* X = context.Input<framework::Tensor>("X");
F
fengjiayi 已提交
64 65 66
    auto* Out = context.Input<framework::Tensor>("Out");
    auto* dOut =
        context.Input<framework::Tensor>(framework::GradVarName("Out"));
Q
qijun 已提交
67 68 69
    auto* dX = context.Output<framework::Tensor>(framework::GradVarName("X"));
    dX->mutable_data<T>(context.GetPlace());

F
fengjiayi 已提交
70
    auto dout = framework::EigenVector<T>::Flatten(*dOut);
Q
qijun 已提交
71
    auto x = framework::EigenVector<T>::Flatten(*X);
F
fengjiayi 已提交
72
    auto out = framework::EigenVector<T>::Flatten(*Out);
Q
qijun 已提交
73
    auto dx = framework::EigenVector<T>::Flatten(*dX);
Q
QI JUN 已提交
74 75
    auto* place =
        context.template device_context<DeviceContext>().eigen_device();
Q
qijun 已提交
76
    Functor functor;
77 78 79 80
    auto attrs = functor.GetAttrs();
    for (auto& attr : attrs) {
      *attr.second = context.Attr<float>(attr.first);
    }
F
fengjiayi 已提交
81
    functor(*place, x, out, dout, dx);
Q
qijun 已提交
82 83 84
  }
};

85 86 87 88 89 90 91 92 93
template <typename T>
struct BaseActivationFunctor {
  using ELEMENT_TYPE = T;

  using AttrPair = std::vector<std::pair<const char*, float*>>;

  AttrPair GetAttrs() { return AttrPair(); }
};

94
// sigmoid(x) = 1 / (1 + exp(-x))
Q
qijun 已提交
95
template <typename T>
96
struct SigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
97 98 99
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / (static_cast<T>(1) + (-x).exp());
Q
qijun 已提交
100 101 102
  }
};

103
template <typename T>
104
struct SigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
105 106 107 108
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out * (static_cast<T>(1) - out);
Q
qijun 已提交
109 110 111
  }
};

112 113 114 115
// Originally: logsigmoid(x) = -log (1 + exp(-x))
// For numerical stability, we can use the log-sum-exp trick:
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// We can rewrite the above equation as:
F
fengjiayi 已提交
116
// out = -log( exp(0) + exp(-x)) [since exp(0) = 1]
117 118 119 120 121 122 123 124 125 126
//   = -log( exp(max(-x, 0) - max(-x, 0)) + exp(-x + max(-x, 0) - max(-x, 0)))
//   = -log( exp(max(-x, 0)) * exp(-max(-x, 0)) - exp(max(-x, 0)) * exp(-x -
//           max(-x, 0)))
//   = -log( exp(max(-x, 0)) * (exp(-max(-x, 0)) + exp(-x - max(-x, 0))))
//   = -log( exp(max(-x, 0)) - log(exp(-max(-x, 0)) + exp(-x - max(-x, 0)))
//
// Hence, logsigmoid(x) = - (max(-x, 0) + log(exp(-max(-x, 0))
// + exp(-x - max(-x, 0))))
template <typename T>
struct LogSigmoidFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
127 128
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
129
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
F
fengjiayi 已提交
130
    out.device(d) = -temp - (((-temp).exp() + (-x - temp).exp()).log());
131 132 133 134 135 136 137 138
  }
};

// Originally: f' = exp(-x) / (1 + exp(-x))
// For numerical stability: f' = exp(-x - max(-x, 0)) / (exp(-max(-x, 0)) +
// exp(-x - max(-x, 0)))
template <typename T>
struct LogSigmoidGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
139 140 141
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
142 143
    auto temp = (-x).cwiseMax(static_cast<T>(0));  // temp = max(-x, 0)
    dx.device(d) =
F
fengjiayi 已提交
144
        dout * ((-x - temp).exp() / ((-temp).exp() + (-x - temp).exp()));
145 146 147
  }
};

Q
qijun 已提交
148
// exp(x) = e^x
149 150
template <typename T>
struct ExpFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
151 152 153
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.exp();
Q
qijun 已提交
154 155 156
  }
};

157 158
template <typename T>
struct ExpGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
159 160 161 162
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * out;
Q
qijun 已提交
163 164 165
  }
};

Q
qijun 已提交
166
// relu(x) = max(x, 0)
Q
qijun 已提交
167
template <typename T>
168
struct ReluFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
169 170 171
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0));
Q
qijun 已提交
172 173
  }
};
Q
qijun 已提交
174

Q
qijun 已提交
175
template <typename T>
176
struct ReluGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
177 178 179 180
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>();
Q
qijun 已提交
181 182
  }
};
Q
qijun 已提交
183

184
// tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
185 186
template <typename T>
struct TanhFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
187 188 189
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.tanh();
Q
qijun 已提交
190 191 192 193
  }
};

template <typename T>
194
struct TanhGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
195 196 197 198
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) - out * out);
Q
qijun 已提交
199 200 201
  }
};

K
Kavya Srinet 已提交
202 203 204 205
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct TanhShrinkFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
206 207 208
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x - x.tanh();
K
Kavya Srinet 已提交
209 210 211 212 213
  }
};

template <typename T>
struct TanhShrinkGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
214 215 216 217
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x.tanh() * x.tanh());
K
Kavya Srinet 已提交
218 219 220
  }
};

221 222 223 224 225 226 227 228 229
// tanhshrink(x) = x - tanh(x)
// where tanh(x) = (exp(x) - exp(-x)) / (exp(x) + exp(-x))
template <typename T>
struct HardShrinkFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
230 231
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
232 233
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
234
    out.device(d) = x * (temp1 + temp2);
235 236 237 238 239 240 241 242 243 244 245
  }
};

template <typename T>
struct HardShrinkGradFunctor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
246 247 248
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
249 250
    auto temp1 = (x < static_cast<T>(threshold * -1)).template cast<T>().eval();
    auto temp2 = (x > static_cast<T>(threshold)).template cast<T>().eval();
F
fengjiayi 已提交
251
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
252 253 254
  }
};

K
Kexin Zhao 已提交
255
// softshrink(x) = x - lambda, if x > lambda; x + lambda, if x < -lambda; 0
256 257 258 259 260 261 262 263
// otherwise
template <typename T>
struct SoftShrinkFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }

F
fengjiayi 已提交
264 265
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
266 267 268
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
269
    out.device(d) = temp1 * (x - lambdaT) + temp2 * (x + lambdaT);
270 271 272 273 274 275 276 277 278
  }
};

template <typename T>
struct SoftShrinkGradFunctor : public BaseActivationFunctor<T> {
  float lambda;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"lambda", &lambda}};
  }
F
fengjiayi 已提交
279 280 281
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
282 283 284
    auto lambdaT = static_cast<T>(lambda);
    auto temp1 = (x > lambdaT).template cast<T>().eval();
    auto temp2 = (x < -lambdaT).template cast<T>().eval();
F
fengjiayi 已提交
285
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
286 287 288
  }
};

Q
qijun 已提交
289
// sqrt(x) = x^(1/2)
290 291
template <typename T>
struct SqrtFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
292 293 294
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.sqrt();
Q
qijun 已提交
295 296 297 298
  }
};

template <typename T>
299
struct SqrtGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
300 301 302 303 304
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    const Out out_conj = Eigen::numext::conj(out);
    dx.device(d) = static_cast<T>(0.5) * dout / out_conj;
Q
qijun 已提交
305 306 307
  }
};

D
dzhwinter 已提交
308 309 310
// ceil(x) = ceiling(x)
template <typename T>
struct CeilFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
311 312 313
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.ceil();
D
dzhwinter 已提交
314 315 316 317 318
  }
};

template <typename T>
struct ZeroGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
319 320 321
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
D
dzhwinter 已提交
322 323 324 325 326 327 328
    dx.device(d) = static_cast<T>(0) / x;
  }
};

// floor(x) = flooring(x)
template <typename T>
struct FloorFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
329 330
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Q
Qiao Longfei 已提交
331
    out.device(d) = x.floor();
D
dzhwinter 已提交
332 333 334
  }
};

C
add cos  
chengduoZH 已提交
335 336 337 338 339
template <typename T>
struct Sine {
  HOSTDEVICE T operator()(const T& val) const { return sin(val); }
};

340 341 342 343 344 345 346
template <>
struct Sine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(sin(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
347 348 349 350 351
template <typename T>
struct Cosine {
  HOSTDEVICE T operator()(const T& val) const { return cos(val); }
};

352 353 354 355 356 357 358
template <>
struct Cosine<platform::float16> {
  HOSTDEVICE platform::float16 operator()(const platform::float16& val) const {
    return platform::float16(cos(static_cast<float>(val)));
  }
};

C
add cos  
chengduoZH 已提交
359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396
// cosine'(x) = -sin(x)
template <typename T>
struct CosGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = -dout * x.unaryExpr(Sine<T>());
  }
};

// cosine(x) = cos(x)
template <typename T>
struct CosFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Cosine<T>());
  }
};

// sine'(x) = cos(x)
template <typename T>
struct SinGradFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.unaryExpr(Cosine<T>());
  }
};

// sine(x) = sin(x)
template <typename T>
struct SinFunctor : public BaseActivationFunctor<T> {
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.unaryExpr(Sine<T>());
  }
};

D
dzhwinter 已提交
397 398 399
// round(x) = [x]
template <typename T>
struct RoundFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
400 401 402
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.round();
D
dzhwinter 已提交
403 404 405
  }
};

Q
qijun 已提交
406
// abs(x) = |x|
407 408
template <typename T>
struct AbsFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
409 410 411
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.abs();
Q
qijun 已提交
412 413 414
  }
};

415 416
template <typename T>
struct AbsGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
417 418 419 420
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * x.sign();
421 422 423
  }
};

Q
qijun 已提交
424 425
// reciprocal(x) = 1 / x
template <typename T>
426
struct ReciprocalFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
427 428 429
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = static_cast<T>(1) / x;
Q
qijun 已提交
430 431 432
  }
};

433
template <typename T>
434
struct ReciprocalGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
435 436 437 438
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(-1) * out * out;
Q
qijun 已提交
439 440 441 442
  }
};

// log(x) = natural logarithm of x
443 444
template <typename T>
struct LogFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
445 446 447
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.log();
Q
qijun 已提交
448 449 450
  }
};

451
template <typename T>
452
struct LogGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
453 454 455 456
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (static_cast<T>(1) / x);
Q
qijun 已提交
457 458 459 460
  }
};

// square(x) = x^2
461 462
template <typename T>
struct SquareFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
463 464 465
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.square();
Q
qijun 已提交
466
  }
467
};
Q
qijun 已提交
468

469
template <typename T>
470
struct SquareGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
471 472 473 474
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(2) * x;
475 476 477
  }
};

478 479 480 481 482 483 484 485 486 487
template <typename T>
struct BReluFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;

  // NOTE: Explicit hides the `BaseActivationFunctor<T>::GetAttrs`
  // not polymorphism for speed.
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
488

F
fengjiayi 已提交
489 490 491
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
492
        x.cwiseMax(static_cast<T>(t_min)).cwiseMin(static_cast<T>(t_max));
493 494 495
  }
};

496 497 498 499 500 501 502
template <typename T>
struct BReluGradFunctor : public BaseActivationFunctor<T> {
  float t_min;
  float t_max;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"t_min", &t_min}, {"t_max", &t_max}};
  }
F
fengjiayi 已提交
503 504 505 506
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
507 508
                   ((x > static_cast<T>(t_min)) * (x < static_cast<T>(t_max)))
                       .template cast<T>();
509 510 511
  }
};

512 513 514 515 516 517 518 519 520
// relu6(x) = min(max(0, x), 6)
template <typename T>
struct Relu6Functor : public BaseActivationFunctor<T> {
  float threshold;

  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
521 522 523
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
524
        x.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(threshold));
525 526 527 528 529 530 531 532 533
  }
};

template <typename T>
struct Relu6GradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
534 535 536 537
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
Y
Yu Yang 已提交
538 539
                   ((x > static_cast<T>(0)) * (x < static_cast<T>(threshold)))
                       .template cast<T>();
540 541 542
  }
};

K
kexinzhao 已提交
543 544 545 546 547 548 549
// softplus(x) = log(1 + exp(x))
// When x is a very large positive number, exp(x) may explode to inf,
// Using trick below for numerical stability
// https://hips.seas.harvard.edu/blog/2013/01/09/computing-log-sum-exp/
// Then: softplus(x) = max(x, 0) + log(exp(-max(x, 0)) + exp(x - max(x, 0)))
template <typename T>
struct SoftplusFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
550 551
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
K
kexinzhao 已提交
552
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
553
    out.device(d) = temp + (((-temp).exp() + (x - temp).exp()).log());
K
kexinzhao 已提交
554 555 556 557 558 559 560 561 562
  }
};

// d(softplus(x))/dx = exp(x) / (1 + exp(x))
// For numerical stability:
// d(softplus(x))/dx = exp(x - max(x, 0)) / (exp(-max(x, 0)) +
// exp(x - max(x, 0)))
template <typename T>
struct SoftplusGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
563 564 565
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
K
kexinzhao 已提交
566
    auto temp = x.cwiseMax(static_cast<T>(0));  // temp = max(x, 0)
F
fengjiayi 已提交
567 568
    dx.device(d) =
        dout * ((x - temp).exp() / ((-temp).exp() + (x - temp).exp()));
K
kexinzhao 已提交
569 570 571
  }
};

572 573
// softsign(x) = x / (1 + |x|)
template <typename T>
574
struct SoftsignFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
575 576 577
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) {
    out.device(d) = x / (static_cast<T>(1) + x.abs());
578 579 580 581 582 583
  }
};

// d(softsign(x))/dx = 1 / (1 + |x|)^2
// Taken from https://en.wikipedia.org/wiki/Activation_function
template <typename T>
584
struct SoftsignGradFunctor : public BaseActivationFunctor<T> {
F
fengjiayi 已提交
585 586 587
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) {
588
    dx.device(d) =
F
fengjiayi 已提交
589
        dout * (static_cast<T>(1) / (static_cast<T>(1) + x.abs()).square());
590 591 592
  }
};

593 594 595 596 597 598
template <typename T>
struct SoftReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
599

F
fengjiayi 已提交
600 601
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
602 603
    auto tmp = static_cast<T>(threshold);
    auto temp = x.cwiseMax(-tmp).cwiseMin(tmp);
F
fengjiayi 已提交
604
    out.device(d) = (static_cast<T>(1) + temp.exp()).log();
605 606 607
  }
};

608 609 610 611 612 613
template <typename T>
struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }
F
fengjiayi 已提交
614 615 616
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
617 618
    auto tmp = static_cast<T>(threshold);
    auto temp = ((x > -tmp) * (x < tmp)).template cast<T>().eval();
F
fengjiayi 已提交
619
    dx.device(d) = dout * (static_cast<T>(1) - (-out).exp()) * temp;
620 621 622
  }
};

K
Kavya Srinet 已提交
623 624 625 626 627 628
template <typename T>
struct LeakyReluFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
629

F
fengjiayi 已提交
630 631 632
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(alpha) * x);
633 634 635
  }
};

K
Kavya Srinet 已提交
636 637 638 639 640 641
template <typename T>
struct LeakyReluGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
642 643 644
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
645 646
    auto temp1 = static_cast<T>(alpha) *
                 (x < static_cast<T>(0)).template cast<T>().eval();
K
Kavya Srinet 已提交
647
    auto temp2 = (x >= static_cast<T>(0)).template cast<T>().eval();
F
fengjiayi 已提交
648
    dx.device(d) = dout * (temp1 + temp2).template cast<T>();
649 650 651
  }
};

652 653 654 655 656 657
template <typename T>
struct ELUFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
658

F
fengjiayi 已提交
659 660 661 662 663
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.cwiseMax(static_cast<T>(0)) +
                    (static_cast<T>(alpha) * (x.exp() - static_cast<T>(1)))
                        .cwiseMin(static_cast<T>(0));
664 665 666
  }
};

667 668 669 670 671 672
template <typename T>
struct ELUGradFunctor : public BaseActivationFunctor<T> {
  float alpha;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"alpha", &alpha}};
  }
F
fengjiayi 已提交
673 674 675 676 677
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * (x > static_cast<T>(0)).template cast<T>() +
                   dout * (out + static_cast<T>(alpha)) *
Y
Yu Yang 已提交
678
                       (x < static_cast<T>(0)).template cast<T>();
679 680 681
  }
};

Q
QI JUN 已提交
682
// FIXME(qijun) https://github.com/PaddlePaddle/Paddle/issues/5198
683 684 685 686 687 688
template <typename T>
struct PowFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
689 690 691
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x.pow(static_cast<T>(factor));
692 693 694
  }
};

695 696 697 698 699 700
template <typename T>
struct PowGradFunctor : public BaseActivationFunctor<T> {
  float factor;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"factor", &factor}};
  }
F
fengjiayi 已提交
701 702 703 704
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout * static_cast<T>(factor) *
Y
Yu Yang 已提交
705
                   x.pow(static_cast<T>(factor - static_cast<T>(1)));
706 707 708
  }
};

709 710 711 712 713 714 715
template <typename T>
struct STanhFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
716

F
fengjiayi 已提交
717 718 719
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) =
Y
Yu Yang 已提交
720
        static_cast<T>(scale_b) * (static_cast<T>(scale_a) * x).tanh();
721 722 723
  }
};

724 725 726 727 728 729 730
template <typename T>
struct STanhGradFunctor : public BaseActivationFunctor<T> {
  float scale_a;
  float scale_b;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"scale_a", &scale_a}, {"scale_b", &scale_b}};
  }
731

F
fengjiayi 已提交
732 733 734
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
735 736 737
    auto a = static_cast<T>(scale_a);
    auto b = static_cast<T>(scale_b);
    auto temp = (a * x).tanh() * (a * x).tanh();
F
fengjiayi 已提交
738
    dx.device(d) = dout * a * b * (static_cast<T>(1) - temp);
Q
qijun 已提交
739 740 741
  }
};

742 743 744 745 746 747 748
template <typename T>
struct ThresholdedReluFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
749 750
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
Y
Yu Yang 已提交
751
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
752
    out.device(d) = (x > th).template cast<T>() * x;
753 754 755 756 757 758 759 760 761 762
  }
};

template <typename T>
struct ThresholdedReluGradFunctor : public BaseActivationFunctor<T> {
  float threshold;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"threshold", &threshold}};
  }

F
fengjiayi 已提交
763 764 765
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
Y
Yu Yang 已提交
766
    auto th = static_cast<T>(threshold);
F
fengjiayi 已提交
767
    dx.device(d) = dout * (x > th).template cast<T>();
768 769 770
  }
};

771 772 773 774 775 776 777 778
template <typename T>
struct HardSigmoidFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
779 780
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
781
    auto temp = x * static_cast<T>(slope) + static_cast<T>(offset);
F
fengjiayi 已提交
782 783
    out.device(d) =
        temp.cwiseMax(static_cast<T>(0)).cwiseMin(static_cast<T>(1));
784 785 786 787 788 789 790 791 792 793 794
  }
};

template <typename T>
struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
  float slope;
  float offset;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"slope", &slope}, {"offset", &offset}};
  }

F
fengjiayi 已提交
795 796 797 798 799 800 801
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
    dx.device(d) = dout *
                   ((out > static_cast<T>(0)) * (out < static_cast<T>(1)))
                       .template cast<T>() *
                   static_cast<T>(slope);
802 803 804
  }
};

A
Abhinav Arora 已提交
805 806 807 808 809 810 811
template <typename T>
struct SwishFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
812 813 814
  template <typename Device, typename X, typename Out>
  void operator()(Device d, X x, Out out) const {
    out.device(d) = x / (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
A
Abhinav Arora 已提交
815 816 817 818 819 820 821 822 823 824
  }
};

template <typename T>
struct SwishGradFunctor : public BaseActivationFunctor<T> {
  float beta;
  typename BaseActivationFunctor<T>::AttrPair GetAttrs() {
    return {{"beta", &beta}};
  }

F
fengjiayi 已提交
825 826 827
  template <typename Device, typename X, typename Out, typename dOut,
            typename dX>
  void operator()(Device d, X x, Out out, dOut dout, dX dx) const {
A
Abhinav Arora 已提交
828 829
    auto temp1 = static_cast<T>(1) /
                 (static_cast<T>(1) + (static_cast<T>(-beta) * x).exp());
F
fengjiayi 已提交
830 831
    auto temp2 = temp1 * (static_cast<T>(1) - (beta * out));
    dx.device(d) = dout * ((beta * out) + temp2);
A
Abhinav Arora 已提交
832 833 834
  }
};

Q
qijun 已提交
835 836
}  // namespace operators
}  // namespace paddle
837

838 839 840 841
#define FOR_EACH_KERNEL_FUNCTOR(__macro)                             \
  __macro(sigmoid, SigmoidFunctor, SigmoidGradFunctor);              \
  __macro(logsigmoid, LogSigmoidFunctor, LogSigmoidGradFunctor);     \
  __macro(exp, ExpFunctor, ExpGradFunctor);                          \
842
  __macro(relu, ReluFunctor, ReluGradFunctor);                       \
843 844 845 846
  __macro(tanh, TanhFunctor, TanhGradFunctor);                       \
  __macro(softshrink, SoftShrinkFunctor, SoftShrinkGradFunctor);     \
  __macro(sqrt, SqrtFunctor, SqrtGradFunctor);                       \
  __macro(abs, AbsFunctor, AbsGradFunctor);                          \
D
dzhwinter 已提交
847 848
  __macro(ceil, CeilFunctor, ZeroGradFunctor);                       \
  __macro(floor, FloorFunctor, ZeroGradFunctor);                     \
C
add cos  
chengduoZH 已提交
849
  __macro(cos, CosFunctor, CosGradFunctor);                          \
C
add sin  
chengduoZH 已提交
850
  __macro(sin, SinFunctor, SinGradFunctor);                          \
D
dzhwinter 已提交
851
  __macro(round, RoundFunctor, ZeroGradFunctor);                     \
852 853 854 855 856 857 858 859 860 861 862 863 864 865 866
  __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor);     \
  __macro(log, LogFunctor, LogGradFunctor);                          \
  __macro(square, SquareFunctor, SquareGradFunctor);                 \
  __macro(brelu, BReluFunctor, BReluGradFunctor);                    \
  __macro(soft_relu, SoftReluFunctor, SoftReluGradFunctor);          \
  __macro(pow, PowFunctor, PowGradFunctor);                          \
  __macro(stanh, STanhFunctor, STanhGradFunctor);                    \
  __macro(softplus, SoftplusFunctor, SoftplusGradFunctor);           \
  __macro(softsign, SoftsignFunctor, SoftsignGradFunctor);           \
  __macro(relu6, Relu6Functor, Relu6GradFunctor);                    \
  __macro(leaky_relu, LeakyReluFunctor, LeakyReluGradFunctor);       \
  __macro(tanh_shrink, TanhShrinkFunctor, TanhShrinkGradFunctor);    \
  __macro(elu, ELUFunctor, ELUGradFunctor);                          \
  __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor);    \
  __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \
A
Abhinav Arora 已提交
867
  __macro(swish, SwishFunctor, SwishGradFunctor);                    \
868
  __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor);