jde_loss.py 6.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from ppdet.core.workspace import register

__all__ = ['JDEDetectionLoss', 'JDEEmbeddingLoss', 'JDELoss']


@register
class JDEDetectionLoss(nn.Layer):
    __shared__ = ['num_classes']

    def __init__(self, num_classes=1):
        super(JDEDetectionLoss, self).__init__()
        self.num_classes = num_classes

    def det_loss(self, p_det, anchor, t_conf, t_box):
        pshape = paddle.shape(p_det)
        pshape.stop_gradient = True
        nB, nGh, nGw = pshape[0], pshape[-2], pshape[-1]
        nA = len(anchor)
        p_det = paddle.reshape(
            p_det, [nB, nA, self.num_classes + 5, nGh, nGw]).transpose(
                (0, 1, 3, 4, 2))

        # 1. loss_conf: cross_entropy
        p_conf = p_det[:, :, :, :, 4:6]
        p_conf_flatten = paddle.reshape(p_conf, [-1, 2])
        t_conf_flatten = t_conf.flatten()
        t_conf_flatten = paddle.cast(t_conf_flatten, dtype="int64")
        t_conf_flatten.stop_gradient = True
        loss_conf = F.cross_entropy(
            p_conf_flatten, t_conf_flatten, ignore_index=-1, reduction='mean')
        loss_conf.stop_gradient = False

        # 2. loss_box: smooth_l1_loss
        p_box = p_det[:, :, :, :, :4]
        p_box_flatten = paddle.reshape(p_box, [-1, 4])
        t_box_flatten = paddle.reshape(t_box, [-1, 4])
        fg_inds = paddle.nonzero(t_conf_flatten > 0).flatten()
        if fg_inds.numel() > 0:
            reg_delta = paddle.gather(p_box_flatten, fg_inds)
            reg_target = paddle.gather(t_box_flatten, fg_inds)
        else:
            reg_delta = paddle.to_tensor([0, 0, 0, 0], dtype='float32')
            reg_delta.stop_gradient = False
            reg_target = paddle.to_tensor([0, 0, 0, 0], dtype='float32')
        reg_target.stop_gradient = True
        loss_box = F.smooth_l1_loss(
            reg_delta, reg_target, reduction='mean', delta=1.0)
        loss_box.stop_gradient = False

        return loss_conf, loss_box

    def forward(self, det_outs, targets, anchors):
        """
        Args:
            det_outs (list[Tensor]): output from detection head, each one
                is a 4-D Tensor with shape [N, C, H, W].
            targets (dict): contains 'im_id', 'gt_bbox', 'gt_ide', 'image',
                'im_shape', 'scale_factor' and 'tbox', 'tconf', 'tide' of
                each FPN level.
            anchors (list[list]): anchor setting of JDE model, N row M col, N is
                the anchor levels(FPN levels), M is the anchor scales each
                level.
        """
        assert len(det_outs) == len(anchors)
        loss_confs = []
        loss_boxes = []
        for i, (p_det, anchor) in enumerate(zip(det_outs, anchors)):
            t_conf = targets['tconf{}'.format(i)]
            t_box = targets['tbox{}'.format(i)]

            loss_conf, loss_box = self.det_loss(p_det, anchor, t_conf, t_box)
            loss_confs.append(loss_conf)
            loss_boxes.append(loss_box)
        return {'loss_confs': loss_confs, 'loss_boxes': loss_boxes}


@register
class JDEEmbeddingLoss(nn.Layer):
    def __init__(self, ):
        super(JDEEmbeddingLoss, self).__init__()
        self.phony = self.create_parameter(shape=[1], dtype="float32")

    def emb_loss(self, p_ide, t_conf, t_ide, emb_scale, classifier):
        emb_dim = p_ide.shape[1]
        p_ide = p_ide.transpose((0, 2, 3, 1))
        p_ide_flatten = paddle.reshape(p_ide, [-1, emb_dim])
        mask = t_conf > 0
        mask = paddle.cast(mask, dtype="int64")
        mask.stop_gradient = True
        emb_mask = mask.max(1).flatten()
        emb_mask_inds = paddle.nonzero(emb_mask > 0).flatten()
        emb_mask_inds.stop_gradient = True
        # use max(1) to decide the id, TODO: more reseanable strategy
        t_ide_flatten = t_ide.max(1).flatten()
        t_ide_flatten = paddle.cast(t_ide_flatten, dtype="int64")
        valid_inds = paddle.nonzero(t_ide_flatten != -1).flatten()

        if emb_mask_inds.numel() == 0 or valid_inds.numel() == 0:
            # loss_ide = paddle.to_tensor([0]) # will be error in gradient backward
            loss_ide = self.phony * 0  # todo
        else:
            embedding = paddle.gather(p_ide_flatten, emb_mask_inds)
            embedding = emb_scale * F.normalize(embedding)
            logits = classifier(embedding)

            ide_target = paddle.gather(t_ide_flatten, emb_mask_inds)

            loss_ide = F.cross_entropy(
                logits, ide_target, ignore_index=-1, reduction='mean')
        loss_ide.stop_gradient = False

        return loss_ide

    def forward(self, ide_outs, targets, emb_scale, classifier):
        loss_ides = []
        for i, p_ide in enumerate(ide_outs):
            t_conf = targets['tconf{}'.format(i)]
            t_ide = targets['tide{}'.format(i)]

            loss_ide = self.emb_loss(p_ide, t_conf, t_ide, emb_scale,
                                     classifier)
            loss_ides.append(loss_ide)
        return loss_ides


@register
class JDELoss(nn.Layer):
    def __init__(self):
        super(JDELoss, self).__init__()

    def forward(self, loss_confs, loss_boxes, loss_ides, loss_params_cls,
                loss_params_reg, loss_params_ide, targets):
        assert len(loss_confs) == len(loss_boxes) == len(loss_ides)
        assert len(loss_params_cls) == len(loss_params_reg) == len(
            loss_params_ide)
        assert len(loss_confs) == len(loss_params_cls)

        batchsize = targets['gt_bbox'].shape[0]
        nTargets = paddle.nonzero(paddle.sum(targets['gt_bbox'], axis=2)).shape[
            0] / batchsize
        nTargets = paddle.to_tensor(nTargets, dtype='float32')
        nTargets.stop_gradient = True

        jde_losses = []
        for i, (loss_conf, loss_box, loss_ide, l_conf_p, l_box_p,
                l_ide_p) in enumerate(
                    zip(loss_confs, loss_boxes, loss_ides, loss_params_cls,
                        loss_params_reg, loss_params_ide)):

            jde_loss = l_conf_p(loss_conf) + l_box_p(loss_box) + l_ide_p(
                loss_ide)
            jde_losses.append(jde_loss)

        loss_all = {
            "loss_conf": sum(loss_confs),
            "loss_box": sum(loss_boxes),
            "loss_ide": sum(loss_ides),
            "loss": sum(jde_losses),
            "nTargets": nTargets,
        }
        return loss_all