fc_op.cc 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/framework/op_registry.h"
#include "paddle/operators/net_op.h"

namespace paddle {
namespace operators {

class FCOp : public NetOp {
 public:
  FCOp(const std::string &type, const framework::VariableNameMap &inputs,
       const framework::VariableNameMap &outputs,
       const framework::AttributeMap &attrs)
      : NetOp(type, inputs, outputs, attrs) {
L
Liu Yiqun 已提交
27 28
    auto x = Inputs("X");
    auto w = Inputs("W");
29
    auto mul_out = Outputs("MulOut");
L
Liu Yiqun 已提交
30 31 32 33
    PADDLE_ENFORCE_EQ(
        x.size(), w.size(),
        "The size of inputs X(%d) should be the same as that of weights W(%d).",
        x.size(), w.size());
34 35 36 37
    PADDLE_ENFORCE_EQ(mul_out.size(), x.size(),
                      "The size of intermediate mul_out(%d) should be the same "
                      "as that of inputs X(%d).",
                      mul_out.size(), x.size());
L
Liu Yiqun 已提交
38

39 40
    size_t n = x.size();
    PADDLE_ENFORCE_GE(n, static_cast<size_t>(1),
L
Liu Yiqun 已提交
41 42
                      "The size of inputs X(%d) should be no less than 1.", n);

43 44 45 46 47 48
    auto x_num_col_dims = Attr<std::vector<int>>("xNumColDims");
    PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n,
                      "The size of attribute xNumColDims(%d) should be the "
                      "same as that of inputs X(%d).",
                      x_num_col_dims.size(), n);

49
    // mul_out[i] = X[i] * W[i]
50 51 52
    for (size_t i = 0; i < n; i++) {
      framework::AttributeMap mul_attr;
      mul_attr["x_num_col_dims"] = static_cast<int>(x_num_col_dims[i]);
53
      mul_attr["y_num_col_dims"] = static_cast<int>(1);
54 55 56
      AppendOp(
          framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}},
                                          {{"Out", {mul_out[i]}}}, mul_attr));
57
    }
L
Liu Yiqun 已提交
58

59 60 61
    // sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1]
    if (n > 1) {
      AppendOp(framework::OpRegistry::CreateOp(
62
          "sum", {{"X", {mul_out}}}, {{"Out", {Output("SumOut")}}}, {}));
63
    } else {
L
Liu Yiqun 已提交
64
      AppendOp(framework::OpRegistry::CreateOp(
65
          "identity", {{"X", {mul_out[0]}}}, {{"Y", {Output("SumOut")}}}, {}));
L
Liu Yiqun 已提交
66
    }
67

68
    // add_out = sum_out + b
69 70
    auto b = Input("B");
    std::string add_out = "SumOut";
71
    if (b != framework::kEmptyVarName) {
72
      add_out = "AddOut";
73
      AppendOp(framework::OpRegistry::CreateOp(
74
          "rowwise_add", {{"X", {Output("SumOut")}}, {"b", {Input("B")}}},
75
          {{"Out", {Output(add_out)}}}, {}));
76
    } else {
77 78
      if (Output("AddOut") != framework::kEmptyVarName) {
        this->Rename(Output("AddOut"), framework::kEmptyVarName);
79
      }
80 81
    }

L
Liu Yiqun 已提交
82 83 84
    auto activation = Attr<std::string>("activation");
    AppendOp(framework::OpRegistry::CreateOp(
        activation, {{"X", {Output(add_out)}}}, {{"Y", {Output("Y")}}}, {}));
85 86 87 88 89 90 91 92
    CompleteAddOp(false);
  }
};

class FCOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
  FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
      : OpProtoAndCheckerMaker(proto, op_checker) {
93 94 95 96 97
    AddInput("X",
             "(A vector of Tensors) each input Tensor can be of arbitrary "
             "dimension, and will be reshaped to a 2-D matrix of size "
             "(minibatch, number_of_input_features) according to attribute "
             "xNumColDims.")
98
        .AsDuplicable();
99 100 101 102
    AddInput("W",
             "(A vector of Tensors) the weights of FC operator, a "
             "vector of 2-D matrix of size "
             "(number_of_input_features, number_of_neurons).")
103
        .AsDuplicable();
104 105 106
    AddInput("B",
             "(Tensor) the bias of FC operator, a 1-D vector of size "
             "number_of_neurons.");
107

108 109 110
    AddOutput("Y",
              "(Tensor) the activated output matrix of FC operator, a 2-D "
              "matrix of size (minibatch, number_of_neurons).");
111
    AddOutput("MulOut",
112 113
              "(A vector of Tensors) the intermediate outputs of FC operator, "
              "each Tensor saving the product of X_i * W_i.")
114 115
        .AsIntermediate()
        .AsDuplicable();
116 117 118 119
    AddOutput(
        "SumOut",
        "(Tensor) the intermediate output of FC operator, "
        "saving the sum of the products of X and W, that is sum{X_i * W_i}.")
120
        .AsIntermediate();
121
    AddOutput("AddOut",
122 123
              "(Tensor) the non-actived output of FC operator, "
              "saving sum{X_i * W_i} + B.")
124
        .AsIntermediate();
125 126 127
    AddAttr<std::string>(
        "activation",
        "(string, default identity) the activation type of FC operator.")
128 129
        .SetDefault("identity")
        .InEnum({"identity", "sigmoid", "softmax"});
130 131 132 133 134 135 136 137 138 139 140
    AddAttr<std::vector<int>>(
        "xNumColDims",
        "(std::vector<int>) The inputs Tensors of FC operator can be of "
        "more than 2 dimensions. In that case, each input Tensor `X_i` will be "
        "reshaped to a 2-D matrix. The matrix's first dimension "
        "(the length of column) will be the product of `X_i`'s last "
        "`xNumColDims_i` dimensions, that is "
        "`X_i.dims[0] x ... x X_i.dims[xNumColDims_i - 1]`. "
        "The matrix's second dimension (the length of row) will be the product "
        "of `X_i`'s first `rank - xNumColDims_i` dimensions, that is "
        "`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)");
141 142 143 144 145 146 147 148 149 150

    AddComment(R"DOC(
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
in Convolutional Neural Networks. Neurons in a fully connected layer have
full connections to all activations in the previous layer.
It computes an inner product of a set of
learned weights with a matrix multiplication followed by a bias offset
(optionally).

Equation:
151
  Y = Act(sum_n{X_i * W_i} + B)
152

153 154 155 156 157
where X_i is Tensor that will be reshaped to a 2-D matrix of size (M x K),
usually M is the minibatch size and K is the number of input features.
W_i is a 2-D matrix of size (K x N), where N means the number of neurons
in the fully connected layer. B is a 1-D vector of size N.
Thus, the output Y is a 2-D matrix of size (M x N).
158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
)DOC");
  }
};

}  // namespace operators
}  // namespace paddle

USE_OP(mul);
USE_OP(rowwise_add);
USE_NO_KERNEL_OP(identity);
USE_OP(sigmoid);
USE_OP(softmax);

namespace ops = paddle::operators;
173
REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker);