jit_kernel_test.cc 7.2 KB
Newer Older
T
tensor-tang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/math/jit_kernel.h"
T
tensor-tang 已提交
16
#include <sys/time.h>
T
tensor-tang 已提交
17 18 19 20 21 22
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"

T
tensor-tang 已提交
23 24 25 26 27 28 29 30
#ifdef PADDLE_WITH_MKLML
#include "paddle/fluid/platform/dynload/mklml.h"
#endif

#ifdef __AVX__
#include <immintrin.h>
#endif

T
tensor-tang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
inline double GetCurrentUS() {
  struct timeval time;
  gettimeofday(&time, NULL);
  return 1e+6 * time.tv_sec + time.tv_usec;
}

template <typename T>
void RandomVec(const int n, T* a) {
  static unsigned int seed = 100;
  std::mt19937 rng(seed++);
  std::uniform_real_distribution<double> uniform_dist(0, 1);
  const T lower = static_cast<T>(-20.f);
  const T upper = static_cast<T>(20.f);
  for (int i = 0; i < n; ++i) {
    a[i] = static_cast<T>(uniform_dist(rng) * (upper - lower) + lower);
  }
}

T
tensor-tang 已提交
49
constexpr int repeat = 20000;
T
tensor-tang 已提交
50

T
tensor-tang 已提交
51 52 53 54 55 56
void vmul_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] * y[i];
  }
}

T
tensor-tang 已提交
57
#if defined __AVX__ || defined __AVX2__
T
tensor-tang 已提交
58
void vmul_intri8(const int n, const float* x, const float* y, float* z) {
T
tensor-tang 已提交
59 60 61 62 63 64 65
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_mul_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif
T
tensor-tang 已提交
66

T
tensor-tang 已提交
67 68 69
#ifdef PADDLE_WITH_MKLML
void vmul_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsMul(n, x, y, z);
T
tensor-tang 已提交
70
}
T
tensor-tang 已提交
71
#endif
T
tensor-tang 已提交
72

T
tensor-tang 已提交
73 74
TEST(JitKernel, vmul) {
  namespace jit = paddle::operators::math::jitkernel;
T
tensor-tang 已提交
75
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
T
tensor-tang 已提交
76 77 78 79 80 81 82 83 84 85
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
T
tensor-tang 已提交
86
    auto trefs = GetCurrentUS();
T
tensor-tang 已提交
87
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
88
      vmul_ref(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
89
    }
T
tensor-tang 已提交
90
    auto trefe = GetCurrentUS();
T
tensor-tang 已提交
91

T
tensor-tang 已提交
92 93
#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
T
tensor-tang 已提交
94
    for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
95
      vmul_mkl(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
96
    }
T
tensor-tang 已提交
97 98
    auto tmkle = GetCurrentUS();
#endif
T
tensor-tang 已提交
99

T
tensor-tang 已提交
100 101 102 103
#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
T
tensor-tang 已提交
104
        vmul_intri8(d, x_data, y_data, zref_data);
T
tensor-tang 已提交
105 106
      }
      auto si1 = GetCurrentUS();
T
tensor-tang 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(d, x_data, y_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
#ifdef PADDLE_WITH_MKLML
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
#else
            << " us, "
#endif
            << "tgt takes: " << (ttgte - ttgts) / repeat;
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

void vadd_ref(const int n, const float* x, const float* y, float* z) {
  for (int i = 0; i < n; ++i) {
    z[i] = x[i] + y[i];
  }
}

#if defined __AVX__ || defined __AVX2__
void vadd_intri8(const int n, const float* x, const float* y, float* z) {
  __m256 tmpx, tmpy;
  tmpx = _mm256_loadu_ps(x);
  tmpy = _mm256_loadu_ps(y);
  tmpx = _mm256_add_ps(tmpx, tmpy);
  _mm256_storeu_ps(z, tmpx);
}
#endif

#ifdef PADDLE_WITH_MKLML
void vadd_mkl(const int n, const float* x, const float* y, float* z) {
  paddle::platform::dynload::vsAdd(n, x, y, z);
}
#endif

TEST(JitKernel, vadd) {
  namespace jit = paddle::operators::math::jitkernel;
  for (int d : {7, 8, 15, 16, 30, 256, 512}) {
    std::vector<float> x(d), y(d);
    std::vector<float> zref(d), ztgt(d);
    RandomVec<float>(d, x.data());
    RandomVec<float>(d, y.data());
    const auto& ker =
        jit::KernelPool::Instance().template Get<jit::VAddKernel<float>>(d);
    const float* x_data = x.data();
    const float* y_data = y.data();
    float* ztgt_data = ztgt.data();
    float* zref_data = zref.data();
    auto trefs = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_ref(d, x_data, y_data, zref_data);
    }
    auto trefe = GetCurrentUS();

#ifdef PADDLE_WITH_MKLML
    auto tmkls = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      vadd_mkl(d, x_data, y_data, zref_data);
    }
    auto tmkle = GetCurrentUS();
#endif

#if defined __AVX__ || defined __AVX2__
    if (d == 8) {
      auto si0 = GetCurrentUS();
      for (int i = 0; i < repeat; ++i) {
        vadd_intri8(d, x_data, y_data, zref_data);
      }
      auto si1 = GetCurrentUS();
T
tensor-tang 已提交
186 187 188 189
      VLOG(3) << "Vec size 8 intr takes: " << (si1 - si0) / repeat;
    }
#endif

T
tensor-tang 已提交
190 191 192 193 194 195 196
    auto ttgts = GetCurrentUS();
    for (int i = 0; i < repeat; ++i) {
      ker->Compute(d, x_data, y_data, ztgt_data);
    }
    auto ttgte = GetCurrentUS();

    VLOG(3) << "Vec size " << d << ": refer takes: " << (trefe - trefs) / repeat
T
tensor-tang 已提交
197
#ifdef PADDLE_WITH_MKLML
T
tensor-tang 已提交
198
            << " us, mkl takes: " << (tmkle - tmkls) / repeat << " us, "
T
tensor-tang 已提交
199
#else
T
tensor-tang 已提交
200
            << " us, "
T
tensor-tang 已提交
201
#endif
T
tensor-tang 已提交
202
            << "tgt takes: " << (ttgte - ttgts) / repeat;
T
tensor-tang 已提交
203 204 205 206 207 208
    for (int i = 0; i < d; ++i) {
      EXPECT_NEAR(ztgt_data[i], zref_data[i], 1e-3);
    }
  }
}

T
tensor-tang 已提交
209 210 211 212
TEST(JitKernel, pool) {
  namespace jit = paddle::operators::math::jitkernel;
  const int frame_size = 4;
  std::string act_gate = "sigmoid", act_cand = "tanh", act_cell = "tanh";
T
tensor-tang 已提交
213
  const auto& plstm1 =
T
tensor-tang 已提交
214 215 216 217
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
218
  const auto& plstm2 =
T
tensor-tang 已提交
219 220 221 222
      jit::KernelPool::Instance()
          .template Get<jit::LSTMKernel<float>, int, const std::string&,
                        const std::string&, const std::string&>(
              frame_size, act_gate, act_cand, act_cell);
T
tensor-tang 已提交
223
  EXPECT_EQ(plstm1, plstm2);
T
tensor-tang 已提交
224

T
tensor-tang 已提交
225
  const auto& pvmul_f =
T
tensor-tang 已提交
226
      jit::KernelPool::Instance().template Get<jit::VMulKernel<float>>(4);
T
tensor-tang 已提交
227 228
  EXPECT_TRUE(std::dynamic_pointer_cast<jit::Kernel>(plstm2) !=
              std::dynamic_pointer_cast<jit::Kernel>(pvmul_f));
T
tensor-tang 已提交
229

T
tensor-tang 已提交
230
  const auto& pvmul_d =
T
tensor-tang 已提交
231
      jit::KernelPool::Instance().template Get<jit::VMulKernel<double>>(4);
T
tensor-tang 已提交
232 233 234 235 236 237 238
  EXPECT_TRUE(std::dynamic_pointer_cast<jit::Kernel>(pvmul_f) !=
              std::dynamic_pointer_cast<jit::Kernel>(pvmul_d));

  const auto& pvmul_from_key = jit::KernelPool::Instance().Get("vmulf4");
  EXPECT_TRUE(pvmul_f == pvmul_from_key);
  const auto& pvmul_from_key2 = jit::KernelPool::Instance().Get("vmulf5");
  EXPECT_TRUE(pvmul_from_key2 == nullptr);
T
tensor-tang 已提交
239
}