elementwise_mul_mkldnn_op.cc 7.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <mkldnn/include/mkldnn.hpp>
16 17 18 19 20
#include "paddle/fluid/operators/elementwise_op.h"
#include "paddle/fluid/operators/elementwise_op_function.h"

#include "paddle/fluid/platform/mkldnn_helper.h"

21 22 23
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"

24 25 26 27
namespace paddle {
namespace operators {

using framework::DataLayout;
28
using mkldnn::memory;
29

30 31 32 33 34
struct vector_mul : public Xbyak::CodeGenerator {
  vector_mul() {
    // RDI is ptr X
    // RSI is ptr Y
    // RDX is ptr Z
35 36
    // RCX is h
    // r8 is w
37

38 39 40 41
    push(rbx);

    xor_(rax, rax);
    xor_(r10, r10);
42 43
    vmovups(zmm3, ptr[rsi]);

44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    L("h_loop");
    xor_(rbx, rbx);
    L("w_loop");
    vmovups(zmm2, ptr[rdi + rax]);
    vmulps(zmm1, zmm2, zmm3);
    vmovups(ptr[rdx + rax], zmm1);
    add(rax, 64);
    inc(rbx);
    cmp(r8, rbx);
    jnz("w_loop");
    inc(r10);
    cmp(r10, rcx);
    jnz("h_loop");

    pop(rbx);
59 60 61 62
    ret();
  }
};

63 64 65 66 67 68 69 70
void check(const float* x, const float* y, float* z, int w) {
  for (int wi = 0; wi < w; wi++) {
    for (int i = 0; i < 16; i++) {
      z[wi * 16 + i] = x[wi * 16 + i] * y[i];
    }
  }
}

71 72 73
static mkldnn::memory::format StringToMKLDNNFormat(std::string& format) {
  std::transform(format.begin(), format.end(), format.begin(), ::tolower);

74
  if (!format.compare("nchw")) {
75
    return memory::format::nchw;
76
  } else if (!format.compare("nchw16c")) {
77
    return memory::format::nChw16c;
78
  } else if (!format.compare("nchw8c")) {
79
    return memory::format::nChw8c;
80
  } else if (!format.compare("nhwc")) {
81 82 83 84 85 86 87
    return memory::format::nhwc;
  } else {
    return memory::format::any;
  }
}

static void UpdateDataFormat(const framework::ExecutionContext& ctx,
88 89
                             framework::Tensor* tensor, const char* attribute) {
  if (ctx.op().HasAttr(attribute)) {
90 91 92 93 94 95 96 97
    auto format_as_string = ctx.Attr<std::string>(attribute);
    auto format = StringToMKLDNNFormat(format_as_string);
    if (format != memory::format::any) {
      tensor->set_format(format);
    }
  }
}

98 99 100
template <typename T>
static void ReorderInput(framework::Tensor* tensor,
                         const platform::Place& place,
101
                         const mkldnn::engine& engine, bool isFourDim) {
102 103 104 105 106 107
  using platform::to_void_cast;
  auto dims = paddle::framework::vectorize2int(tensor->dims());
  framework::Tensor out_tensor;
  out_tensor.Resize(tensor->dims());
  out_tensor.set_format(isFourDim ? memory::format::nchw : memory::format::nc);
  out_tensor.set_layout(tensor->layout());
108 109 110 111 112 113
  mkldnn::memory input_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), tensor->format()}, engine},
      to_void_cast<T>(tensor->data<T>())};
  mkldnn::memory output_memory = {
      {{dims, platform::MKLDNNGetDataType<T>(), out_tensor.format()}, engine},
      to_void_cast<T>(out_tensor.mutable_data<T>(place))};
114 115 116 117
  platform::Reorder(input_memory, output_memory);
  tensor->ShareDataWith(out_tensor);
}

118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
template <typename T>
class ElementwiseMulMKLDNNKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    using Tensor = framework::Tensor;

    int axis = ctx.Attr<int>("axis");
    auto* x = ctx.Input<Tensor>("X");
    auto* y = ctx.Input<Tensor>("Y");
    auto* z = ctx.Output<Tensor>("Out");
    const T* x_data = x->data<T>();
    const T* y_data = y->data<T>();
    T* z_data = z->mutable_data<T>(ctx.GetPlace());

    auto x_dims = x->dims();
    auto y_dims_untrimmed = y->dims();
134
    auto x_int_dims = paddle::framework::vectorize2int(x_dims);
135

136 137
    UpdateDataFormat(ctx, (Tensor*)x, "x_data_format");
    UpdateDataFormat(ctx, (Tensor*)y, "y_data_format");
138

139 140 141 142 143 144
    const bool are_dims_divisable = !(x_int_dims[1] % 16);
    const bool is_x_format_correct = x->format() == memory::format::nChw16c;
    const bool is_y_format_correct = y->format() == memory::format::nc;
    if (is_x_format_correct && is_y_format_correct && are_dims_divisable) {
      int pre, n, post;
      get_mid_dims(x_dims, y_dims_untrimmed, axis, &pre, &n, &post);
145

146 147 148 149 150
      if (post == 1) {
        PADDLE_THROW("Not implemented when post is 1");
      } else {
        // Just check whether it works for RE-Resnext.
        PADDLE_ENFORCE_EQ(x_dims.size(), 4, "X should have 4 dimensions");
151

152 153 154 155
        int n = x_dims[0];
        int c = x_dims[1];
        int h = x_dims[2];
        int w = x_dims[3];
156

157 158
        PADDLE_ENFORCE(y_dims_untrimmed[0] == n && y_dims_untrimmed[1] == c,
                       "Y should be in nc format");
159

160 161
        constexpr int simd_width = 16;
        int C = c / simd_width;
162

163
        vector_mul mul;
164

165
        using mul_func_t =
166
            void (*)(const float*, const float*, float*, int, int);
167

168
        mul_func_t mul_func = (mul_func_t)mul.getCode();
169

170
#pragma omp parallel for collapse(2)
171 172 173
        for (int ni = 0; ni < n; ni++) {
          for (int ci = 0; ci < C; ci++) {
            auto ptr_x =
174
                x_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
175

176 177
            auto ptr_y = y_data + ni * C * simd_width + ci * simd_width;
            auto ptr_z =
178
                z_data + ni * C * h * w * simd_width + ci * h * w * simd_width;
179

180
            mul_func(ptr_x, ptr_y, ptr_z, h, w);
181 182 183
          }
        }
      }
184 185 186

      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
187 188
    } else {
      // Fallback to naive version:
189
      const bool are_inputs_in_same_format = x->format() == y->format();
190
      const bool is_x_nchw = x->format() == memory::format::nchw;
191
      const bool is_x_nc = x->format() == memory::format::nc;
192
      const bool is_y_nchw = y->format() == memory::format::nchw;
193
      const bool is_y_nc = y->format() == memory::format::nc;
194
      if (!are_inputs_in_same_format) {
195 196 197
        using platform::MKLDNNDeviceContext;
        auto& dev_ctx = ctx.template device_context<MKLDNNDeviceContext>();
        const auto& mkldnn_engine = dev_ctx.GetEngine();
198 199 200 201 202 203
        if (!(is_x_nchw || is_x_nc))
          ReorderInput<T>((Tensor*)x, ctx.GetPlace(), mkldnn_engine,
                          x->dims().size() == 4);
        if (!(is_y_nchw || is_y_nc))
          ReorderInput<T>((Tensor*)y, ctx.GetPlace(), mkldnn_engine,
                          y->dims().size() == 4);
204 205
      }

206 207 208 209 210 211 212 213
      auto mul_func = [](T a, T b) -> T { return a * b; };

      TransformFunctor<decltype(mul_func), T,
                       paddle::platform::CPUDeviceContext, T>
          functor(
              x, y, z,
              ctx.template device_context<paddle::platform::CPUDeviceContext>(),
              mul_func);
214

215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
      axis = (axis == -1 ? x_dims.size() - y_dims_untrimmed.size() : axis);
      PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(),
                     "Axis should be in range [0, x_dims)");

      auto y_dims = trim_trailing_singular_dims(y_dims_untrimmed);
      axis = (y_dims.size() == 0) ? x_dims.size() : axis;

      int pre, n, post;
      get_mid_dims(x_dims, y_dims, axis, &pre, &n, &post);

      if (post == 1) {
        functor.RunRowWise(n, pre);
      } else {
        functor.RunMidWise(n, pre, post);
      }
230 231 232 233 234 235 236 237 238 239 240 241
      z->set_layout(DataLayout::kMKLDNN);
      z->set_format(x->format());
    }
  }
};
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;

REGISTER_OP_KERNEL(elementwise_mul, MKLDNN, ::paddle::platform::CPUPlace,
                   ops::ElementwiseMulMKLDNNKernel<float>)