preprocess_op.cc 5.9 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
//   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <vector>
#include <string>
17
#include <thread>
Q
qingqing01 已提交
18 19 20 21 22 23 24 25 26 27 28

#include "include/preprocess_op.h"

namespace PaddleDetection {

void InitInfo::Run(cv::Mat* im, ImageBlob* data) {
  data->im_shape_ = {
      static_cast<float>(im->rows),
      static_cast<float>(im->cols)
  };
  data->scale_factor_ = {1., 1.};
29
  data->in_net_shape_ = {
30 31
      static_cast<float>(im->rows),
      static_cast<float>(im->cols)
Q
qingqing01 已提交
32 33 34
  };
}

35
void NormalizeImage::Run(cv::Mat* im, ImageBlob* data) {
Q
qingqing01 已提交
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  double e = 1.0;
  if (is_scale_) {
    e /= 255.0;
  }
  (*im).convertTo(*im, CV_32FC3, e);
  for (int h = 0; h < im->rows; h++) {
    for (int w = 0; w < im->cols; w++) {
      im->at<cv::Vec3f>(h, w)[0] =
          (im->at<cv::Vec3f>(h, w)[0] - mean_[0] ) / scale_[0];
      im->at<cv::Vec3f>(h, w)[1] =
          (im->at<cv::Vec3f>(h, w)[1] - mean_[1] ) / scale_[1];
      im->at<cv::Vec3f>(h, w)[2] =
          (im->at<cv::Vec3f>(h, w)[2] - mean_[2] ) / scale_[2];
    }
  }
}

void Permute::Run(cv::Mat* im, ImageBlob* data) {
54
  (*im).convertTo(*im, CV_32FC3);
Q
qingqing01 已提交
55 56 57 58 59 60 61 62 63 64 65 66
  int rh = im->rows;
  int rw = im->cols;
  int rc = im->channels();
  (data->im_data_).resize(rc * rh * rw);
  float* base = (data->im_data_).data();
  for (int i = 0; i < rc; ++i) {
    cv::extractChannel(*im, cv::Mat(rh, rw, CV_32FC1, base + i * rh * rw), i);
  }
}

void Resize::Run(cv::Mat* im, ImageBlob* data) {
  auto resize_scale = GenerateScale(*im);
67
  data->im_shape_ = {
68 69
      static_cast<float>(im->cols * resize_scale.first),
      static_cast<float>(im->rows * resize_scale.second)
70 71
  };
  data->in_net_shape_ = {
72 73
      static_cast<float>(im->cols * resize_scale.first),
      static_cast<float>(im->rows * resize_scale.second)
74
  };
Q
qingqing01 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
  cv::resize(
      *im, *im, cv::Size(), resize_scale.first, resize_scale.second, interp_);
  data->im_shape_ = {
    static_cast<float>(im->rows),
    static_cast<float>(im->cols),
  };
  data->scale_factor_ = {
    resize_scale.second,
    resize_scale.first,
  };
}

std::pair<float, float> Resize::GenerateScale(const cv::Mat& im) {
  std::pair<float, float> resize_scale;
  int origin_w = im.cols;
  int origin_h = im.rows;

  if (keep_ratio_) {
    int im_size_max = std::max(origin_w, origin_h);
    int im_size_min = std::min(origin_w, origin_h);
    int target_size_max = *std::max_element(target_size_.begin(), target_size_.end());
    int target_size_min = *std::min_element(target_size_.begin(), target_size_.end());
    float scale_min =
        static_cast<float>(target_size_min) / static_cast<float>(im_size_min);
    float scale_max =
        static_cast<float>(target_size_max) / static_cast<float>(im_size_max);
    float scale_ratio = std::min(scale_min, scale_max);
    resize_scale = {scale_ratio, scale_ratio};
  } else {
    resize_scale.first =
        static_cast<float>(target_size_[1]) / static_cast<float>(origin_w);
    resize_scale.second =
        static_cast<float>(target_size_[0]) / static_cast<float>(origin_h);
  }
  return resize_scale;
}

void PadStride::Run(cv::Mat* im, ImageBlob* data) {
  if (stride_ <= 0) {
    return;
  }
  int rc = im->channels();
  int rh = im->rows;
  int rw = im->cols;
  int nh = (rh / stride_) * stride_ + (rh % stride_ != 0) * stride_;
  int nw = (rw / stride_) * stride_ + (rw % stride_ != 0) * stride_;
  cv::copyMakeBorder(
    *im,
    *im,
    0,
    nh - rh,
    0,
    nw - rw,
    cv::BORDER_CONSTANT,
    cv::Scalar(0));
130
  data->in_net_shape_ = {
131 132
    static_cast<float>(im->rows),
    static_cast<float>(im->cols),
Q
qingqing01 已提交
133 134 135
  };
}

136 137 138 139 140 141 142 143 144
void TopDownEvalAffine::Run(cv::Mat* im, ImageBlob* data) {
  cv::resize(
      *im, *im, cv::Size(trainsize_[0],trainsize_[1]), 0, 0, interp_);
  // todo: Simd::ResizeBilinear();
  data->in_net_shape_ = {
    static_cast<float>(trainsize_[1]),
    static_cast<float>(trainsize_[0]),
  };
}
Q
qingqing01 已提交
145 146 147

// Preprocessor op running order
const std::vector<std::string> Preprocessor::RUN_ORDER = {
148
  "InitInfo", "TopDownEvalAffine", "Resize", "NormalizeImage", "PadStride", "Permute"
Q
qingqing01 已提交
149 150 151 152 153 154 155 156 157 158
};

void Preprocessor::Run(cv::Mat* im, ImageBlob* data) {
  for (const auto& name : RUN_ORDER) {
    if (ops_.find(name) != ops_.end()) {
      ops_[name]->Run(im, data);
    }
  }
}

159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
void CropImg(cv::Mat &img, cv::Mat &crop_img, std::vector<int> &area, std::vector<float> &center, std::vector<float> &scale, float expandratio) {
    int crop_x1 = std::max(0, area[0]);
    int crop_y1 = std::max(0, area[1]);
    int crop_x2 = std::min(img.cols -1, area[2]);
    int crop_y2 = std::min(img.rows - 1, area[3]);
    int center_x = (crop_x1 + crop_x2)/2.;
    int center_y = (crop_y1 + crop_y2)/2.;
    int half_h = (crop_y2 - crop_y1)/2.;
    int half_w = (crop_x2 - crop_x1)/2.;
    if (half_h*3 > half_w*4){
      half_w = static_cast<int>(half_h*0.75);
    }
    else{
      half_h = static_cast<int>(half_w*4/3);
    }
    crop_x1 = std::max(0, center_x - static_cast<int>(half_w*(1+expandratio)));
    crop_y1 = std::max(0, center_y - static_cast<int>(half_h*(1+expandratio)));
    crop_x2 = std::min(img.cols -1, static_cast<int>(center_x + half_w*(1+expandratio)));
    crop_y2 = std::min(img.rows - 1, static_cast<int>(center_y + half_h*(1+expandratio)));
    crop_img = img(cv::Range(crop_y1, crop_y2+1), cv::Range(crop_x1, crop_x2 + 1));
    center.clear();
    center.emplace_back((crop_x1+crop_x2)/2);
    center.emplace_back((crop_y1+crop_y2)/2);
    scale.clear();
    scale.emplace_back((crop_x2-crop_x1));
    scale.emplace_back((crop_y2-crop_y1));
}

Q
qingqing01 已提交
187
}  // namespace PaddleDetection