sensitive.py 6.8 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import time
import numpy as np
import datetime
from collections import deque


def set_paddle_flags(**kwargs):
    for key, value in kwargs.items():
        if os.environ.get(key, None) is None:
            os.environ[key] = str(value)


# NOTE(paddle-dev): All of these flags should be set before
# `import paddle`. Otherwise, it would not take any effect.
set_paddle_flags(
    FLAGS_eager_delete_tensor_gb=0,  # enable GC to save memory
)

from paddle import fluid
from ppdet.experimental import mixed_precision_context
from ppdet.core.workspace import load_config, merge_config, create

from ppdet.data.reader import create_reader

from ppdet.utils.cli import print_total_cfg
from ppdet.utils import dist_utils
from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results
from ppdet.utils.stats import TrainingStats
from ppdet.utils.cli import ArgsParser
from ppdet.utils.check import check_gpu, check_version
import ppdet.utils.checkpoint as checkpoint
from paddleslim.prune import sensitivity
import logging
FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)


def main():
    env = os.environ

    print("FLAGS.config: {}".format(FLAGS.config))
    cfg = load_config(FLAGS.config)
    assert 'architecture' in cfg
    main_arch = cfg.architecture

    merge_config(FLAGS.opt)

    print_total_cfg(cfg)

    place = fluid.CUDAPlace(0)
    exe = fluid.Executor(place)

    # build program
    startup_prog = fluid.Program()
    eval_prog = fluid.Program()
    with fluid.program_guard(eval_prog, startup_prog):
        with fluid.unique_name.guard():
            model = create(main_arch)
            inputs_def = cfg['EvalReader']['inputs_def']
            feed_vars, eval_loader = model.build_inputs(**inputs_def)
            fetches = model.eval(feed_vars)
    eval_prog = eval_prog.clone(True)
    if FLAGS.print_params:
84 85 86
        print(
            "-------------------------All parameters in current graph----------------------"
        )
W
whs 已提交
87 88
        for block in eval_prog.blocks:
            for param in block.all_parameters():
89 90 91 92 93
                print("parameter name: {}\tshape: {}".format(param.name,
                                                             param.shape))
        print(
            "------------------------------------------------------------------------------"
        )
W
whs 已提交
94 95 96 97 98 99 100 101 102 103
        return

    eval_reader = create_reader(cfg.EvalReader)
    eval_loader.set_sample_list_generator(eval_reader, place)

    # parse eval fetches
    extra_keys = []
    if cfg.metric == 'COCO':
        extra_keys = ['im_info', 'im_id', 'im_shape']
    if cfg.metric == 'VOC':
W
whs 已提交
104
        extra_keys = ['gt_bbox', 'gt_class', 'is_difficult']
W
whs 已提交
105 106 107
    if cfg.metric == 'WIDERFACE':
        extra_keys = ['im_id', 'im_shape', 'gt_box']
    eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog,
108
                                                     extra_keys)
W
whs 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136

    exe.run(startup_prog)

    fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel'

    ignore_params = cfg.finetune_exclude_pretrained_params \
                 if 'finetune_exclude_pretrained_params' in cfg else []

    start_iter = 0

    if cfg.weights:
        checkpoint.load_params(exe, eval_prog, cfg.weights)
    else:
        logger.warn("Please set cfg.weights to load trained model.")

    # whether output bbox is normalized in model output layer
    is_bbox_normalized = False
    if hasattr(model, 'is_bbox_normalized') and \
            callable(model.is_bbox_normalized):
        is_bbox_normalized = model.is_bbox_normalized()

    # if map_type not set, use default 11point, only use in VOC eval
    map_type = cfg.map_type if 'map_type' in cfg else '11point'

    def test(program):

        compiled_eval_prog = fluid.compiler.CompiledProgram(program)

137 138
        results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys,
                           eval_values, eval_cls)
W
whs 已提交
139 140 141 142 143
        resolution = None
        if 'mask' in results[0]:
            resolution = model.mask_head.resolution
        dataset = cfg['EvalReader']['dataset']
        box_ap_stats = eval_results(
144 145 146
            results,
            cfg.metric,
            cfg.num_classes,
W
whs 已提交
147 148 149 150 151 152 153 154
            resolution,
            is_bbox_normalized,
            FLAGS.output_eval,
            map_type,
            dataset=dataset)
        return box_ap_stats[0]

    pruned_params = FLAGS.pruned_params
155 156 157 158

    assert (
        FLAGS.pruned_params is not None
    ), "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option."
W
whs 已提交
159 160 161 162
    pruned_params = FLAGS.pruned_params.strip().split(",")
    logger.info("pruned params: {}".format(pruned_params))
    pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(" ")]
    logger.info("pruned ratios: {}".format(pruned_ratios))
163 164 165 166 167 168 169
    sensitivity(
        eval_prog,
        place,
        pruned_params,
        test,
        sensitivities_file=FLAGS.sensitivities_file,
        pruned_ratios=pruned_ratios)
W
whs 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201


if __name__ == '__main__':
    parser = ArgsParser()
    parser.add_argument(
        "--output_eval",
        default=None,
        type=str,
        help="Evaluation directory, default is current directory.")
    parser.add_argument(
        "-d",
        "--dataset_dir",
        default=None,
        type=str,
        help="Dataset path, same as DataFeed.dataset.dataset_dir")
    parser.add_argument(
        "-s",
        "--sensitivities_file",
        default="sensitivities.data",
        type=str,
        help="The file used to save sensitivities.")
    parser.add_argument(
        "-p",
        "--pruned_params",
        default=None,
        type=str,
        help="The parameters to be pruned when calculating sensitivities.")
    parser.add_argument(
        "-r",
        "--pruned_ratios",
        default="0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9",
        type=str,
202 203
        help="The ratios pruned iteratively for each parameter when calculating sensitivities."
    )
W
whs 已提交
204 205 206 207 208 209 210 211
    parser.add_argument(
        "-P",
        "--print_params",
        default=False,
        action='store_true',
        help="Whether to only print the parameters' names and shapes.")
    FLAGS = parser.parse_args()
    main()