DepthwiseConvOp.cpp 9.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "DepthwiseConvOp.h"
16
#include "ConvOp.h"
17 18 19 20 21 22 23
#include "GemmFunctor.h"

namespace paddle {

template <class T>
class DepthwiseConvFunctor<DEVICE_TYPE_CPU, T> {
public:
24
  void operator()(const T* inputData,
25 26 27 28 29
                  const T* filterData,
                  int batchSize,
                  int outputChannels,
                  int outputHeight,
                  int outputWidth,
30
                  int inputChannels,
31 32
                  int inputHeight,
                  int inputWidth,
33 34 35 36 37 38 39
                  int filterHeight,
                  int filterWidth,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  T* outputData) {
40
    // TODO(zhaolong) : cpu implementation of depthwise convolution
41 42 43 44 45 46
  }
};

template <class T>
class DepthwiseConvGradInputFunctor<DEVICE_TYPE_CPU, T> {
public:
47
  void operator()(const T* outputGrad,
48 49 50 51 52
                  const T* filterData,
                  int batchSize,
                  int outputChannels,
                  int outputHeight,
                  int outputWidth,
53
                  int inputChannels,
54 55 56 57 58 59 60 61 62
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  T* inputGrad) {}
63
  // TODO(zhaolong) : cpu implementation of depthwise convolution
64 65 66 67 68
};

template <class T>
class DepthwiseConvGradFilterFunctor<DEVICE_TYPE_CPU, T> {
public:
69
  void operator()(const T* outputGrad,
70 71 72 73 74
                  const T* inputData,
                  int batchSize,
                  int outputChannels,
                  int outputHeight,
                  int outputWidth,
75
                  int inputChannels,
76 77 78 79 80 81 82 83 84 85
                  int inputHeight,
                  int inputWidth,
                  int filterHeight,
                  int filterWidth,
                  int strideH,
                  int strideW,
                  int paddingH,
                  int paddingW,
                  T* colData,
                  T* filterGrad) {}
86
  // TODO(zhaolong) : cpu implementation of depthwise convolution
87 88 89
};

/*
90
 * \brief Forward calculation of depthwise convolution.
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
 */
template <DeviceType Device>
class DepthwiseConvFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  virtual void check(const BufferArgs& inputs,
                     const BufferArgs& outputs) override {
    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);

    const TensorShape& input = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& output = outputs[0].shape();

    size_t batchSize = input[0];
117
    size_t inputChannels = input[1];
118 119
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
120 121 122 123 124 125 126 127 128 129 130
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* inputData = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* outputData = outputs[0].data<real>();

    DepthwiseConvFunctor<Device, real> depthwiseConv;
131
    depthwiseConv(inputData,
132 133 134 135 136
                  filterData,
                  batchSize,
                  outputChannels,
                  outputHeight,
                  outputWidth,
137
                  inputChannels,
138 139
                  inputHeight,
                  inputWidth,
140 141 142 143 144 145 146 147 148 149 150
                  filterHeight,
                  filterWidth,
                  strideH(),
                  strideW(),
                  paddingH(),
                  paddingW(),
                  outputData);
  }
};

/*
151
 * \brief Backward input calculation of depthwise convolution.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
 */
template <DeviceType Device>
class DepthwiseConvGradInputFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  virtual void check(const BufferArgs& inputs,
                     const BufferArgs& outputs) override {
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
    check(inputs, outputs);
    CHECK_EQ(outputs[0].getArgType(), ADD_TO);
    const TensorShape& output = inputs[0].shape();
    const TensorShape& filter = inputs[1].shape();
    const TensorShape& input = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* filterData = inputs[1].data<real>();
    real* inputGrad = outputs[0].data<real>();

    DepthwiseConvGradInputFunctor<Device, real> depthwiseConvGradInput;
192
    depthwiseConvGradInput(outputGrad,
193 194 195 196 197
                           filterData,
                           batchSize,
                           outputChannels,
                           outputHeight,
                           outputWidth,
198
                           inputChannels,
199 200 201 202 203 204 205 206 207 208 209 210 211
                           inputHeight,
                           inputWidth,
                           filterHeight,
                           filterWidth,
                           strideH(),
                           strideW(),
                           paddingH(),
                           paddingW(),
                           inputGrad);
  }
};

/*
212
 * \brief Backward filter calculation of depthwise convolution.
213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
 */
template <DeviceType Device>
class DepthwiseConvGradFilterFunction : public ConvFunctionBase {
public:
  void init(const FuncConfig& config) override {
    ConvFunctionBase::init(config);
  }

  virtual void check(const BufferArgs& inputs,
                     const BufferArgs& outputs) override {
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();
    checkShape(input, filter, output);
  }

  void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
230 231
    CHECK_EQ(numInputs_, inputs.size());
    CHECK_EQ(numOutputs_, outputs.size());
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
    check(inputs, outputs);
    const TensorShape& output = inputs[0].shape();
    const TensorShape& input = inputs[1].shape();
    const TensorShape& filter = outputs[0].shape();

    size_t batchSize = input[0];
    size_t inputChannels = input[1];
    size_t inputHeight = input[2];
    size_t inputWidth = input[3];
    size_t filterHeight = getFilterHeight(filter);
    size_t filterWidth = getFilterWidth(filter);
    size_t outputChannels = output[1];
    size_t outputHeight = output[2];
    size_t outputWidth = output[3];

    real* outputGrad = inputs[0].data<real>();
    real* inputData = inputs[1].data<real>();
    real* filterGrad = outputs[0].data<real>();

251
    int size =
252 253 254 255 256 257
        inputChannels * filterHeight * filterWidth * outputHeight * outputWidth;
    resizeBuffer<Device>(size);
    real* colData = reinterpret_cast<real*>(memory_->getBuf());

    DepthwiseConvGradFilterFunctor<Device, real> depthwiseConvGradFilter;

258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    depthwiseConvGradFilter(outputGrad,
                            inputData,
                            batchSize,
                            outputChannels,
                            outputHeight,
                            outputWidth,
                            inputChannels,
                            inputHeight,
                            inputWidth,
                            filterHeight,
                            filterWidth,
                            strideH(),
                            strideW(),
                            paddingH(),
                            paddingW(),
                            colData,
                            filterGrad);
275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295
  }
};

REGISTER_TYPED_FUNC(DepthwiseConv, CPU, DepthwiseConvFunction);
REGISTER_TYPED_FUNC(DepthwiseConvGradInput,
                    CPU,
                    DepthwiseConvGradInputFunction);
REGISTER_TYPED_FUNC(DepthwiseConvGradFilter,
                    CPU,
                    DepthwiseConvGradFilterFunction);
#ifndef PADDLE_ONLY_CPU
REGISTER_TYPED_FUNC(DepthwiseConv, GPU, DepthwiseConvFunction);
REGISTER_TYPED_FUNC(DepthwiseConvGradInput,
                    GPU,
                    DepthwiseConvGradInputFunction);
REGISTER_TYPED_FUNC(DepthwiseConvGradFilter,
                    GPU,
                    DepthwiseConvGradFilterFunction);
#endif

}  // namespace paddle