control_flow.py 66.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
S
rename  
sneaxiy 已提交
16
from ..wrapped_decorator import signature_safe_contextmanager
D
dzhwinter 已提交
17

18 19
from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant
20
from .. import core
21
from ..framework import Program, Variable, Operator
22
from ..layer_helper import LayerHelper, unique_name
J
JiayiFeng 已提交
23
from ..initializer import force_init_on_cpu
M
minqiyang 已提交
24
from .nn import logical_and, logical_not, logical_or
Y
yuyang18 已提交
25
import numpy
26
import warnings
27
import six
28
from functools import reduce
D
dzhwinter 已提交
29

Q
QI JUN 已提交
30
__all__ = [
W
Wu Yi 已提交
31 32 33
    'While', 'Switch', 'increment', 'array_write', 'create_array', 'less_than',
    'equal', 'array_read', 'array_length', 'IfElse', 'DynamicRNN', 'StaticRNN',
    'reorder_lod_tensor_by_rank', 'Print', 'is_empty'
D
dzhwinter 已提交
34 35
]

Y
Yu Yang 已提交
36

37
def split_lod_tensor(input, mask, level=0):
38 39 40 41
    """
    This function takes in an input that contains the complete lod information,
    and takes in a mask which is used to mask certain parts of the input.
    The output is the true branch and the false branch with the mask applied to
Q
qiaolongfei 已提交
42 43
    the input at a certain level in the tensor. Mainly used in IfElse to split
    data into two parts.
44 45 46 47 48

    Args:
        input(tuple|list|None): The input tensor that contains complete
                                lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
49
        level(int): The specific lod level to split.
50 51

    Returns:
Q
qiaolongfei 已提交
52 53 54 55
        tuple(Variable, Variable):
        The true branch of tensor as per the mask applied to input.

        The false branch of tensor as per the mask applied to input.
56 57 58 59

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
60
          x = fluid.layers.data(name='x', shape=[1])
61 62
          x.persistable = True

Q
qiaolongfei 已提交
63
          y = fluid.layers.data(name='y', shape=[1])
64 65
          y.persistable = True

Q
qiaolongfei 已提交
66
          out_true, out_false = fluid.layers.split_lod_tensor(
67
                input=x, mask=y, level=level)
68

69
    """
70
    helper = LayerHelper('split_lod_tensor', **locals())
X
Xin Pan 已提交
71 72
    out_true = helper.create_variable_for_type_inference(dtype=input.dtype)
    out_false = helper.create_variable_for_type_inference(dtype=input.dtype)
73 74 75 76 77 78 79 80 81 82 83 84
    helper.append_op(
        type='split_lod_tensor',
        inputs={
            'X': input,
            'Mask': mask,
        },
        outputs={'OutTrue': out_true,
                 'OutFalse': out_false},
        attrs={'level': level})
    return out_true, out_false


85
def merge_lod_tensor(in_true, in_false, x, mask, level=0):
86 87 88 89 90
    """
    **merge_lod_tensor**

    This function takes in an input :math:`x`, the True branch, the False
    branch and a binary :math:`mask`. Using this information, this function
Q
qiaolongfei 已提交
91 92 93
    merges the True and False branches of the tensor into a single tensor as
    output at a certain lod level indicated by :math:`level`. Used in IfElse
    to merge the output if True block and False Block.
94 95 96 97 98 99 100

    Args:
        in_true(tuple|list|None): The True branch to be merged.
        in_false(tuple|list|None): The False branch to be merged.
        x(tuple|list|None): The input tensor that contains complete
                            lod information needed to construct the output.
        mask(list): A bool column vector which masks the input.
Q
qiaolongfei 已提交
101
        level(int): The specific lod level to merge.
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120

    Returns:
        Variable: The merged output tensor.

    Examples:
        .. code-block:: python

          x = layers.data(
                      name='x', shape=[1], dtype='float32', stop_gradient=False)
          y = layers.data(
                name='y', shape=[1], dtype='bool', stop_gradient=False)

          level = 0

          out_true, out_false = layers.split_lod_tensor(
                input=x, mask=y, level=level)
          out = layers.merge_lod_tensor(
                in_true=out_true, in_false=out_false, mask=y, x=x, level=level)
    """
121
    helper = LayerHelper('merge_lod_tensor', **locals())
X
Xin Pan 已提交
122
    out = helper.create_variable_for_type_inference(dtype=in_true.dtype)
123 124 125 126 127 128 129 130 131 132 133
    helper.append_op(
        type='merge_lod_tensor',
        inputs={'X': x,
                'Mask': mask,
                'InTrue': in_true,
                'InFalse': in_false},
        outputs={'Out': out},
        attrs={'level': level})
    return out


Y
Yan Chunwei 已提交
134 135 136 137 138 139 140
def Print(input,
          first_n=-1,
          message=None,
          summarize=-1,
          print_tensor_name=True,
          print_tensor_type=True,
          print_tensor_shape=True,
Y
yangyaming 已提交
141 142
          print_tensor_lod=True,
          print_phase='both'):
Y
Yan Chunwei 已提交
143 144 145 146 147 148 149 150 151 152
    '''
    **Print operator**

    This creates a print op that will print when a tensor is accessed.

    Wraps the tensor passed in so that whenever that a tensor is accessed,
    the message `message` is printed, along with the current value of the
    tensor `t`.

    Args:
Y
yangyaming 已提交
153 154 155 156 157 158 159 160 161
        input (Variable): A Tensor to print.
        summarize (int): Print this number of elements in the tensor, will print
                all if left is negative.
        message (str): A string message to print as a prefix.
        first_n (int): Only log `first_n` number of times.
        print_tensor_name (bool): Print the tensor name.
        print_tensor_type (bool): Print the tensor type.
        print_tensor_shape (bool): Print the tensor shape.
        print_tensor_lod (bool): Print the tensor lod.
162
        print_phase (str): Which phase to displace, including 'forward',
Y
yangyaming 已提交
163 164
                'backward' and 'both'. If set to 'backward' or 'both', will
                print the gradients of input tensor.
Y
Yan Chunwei 已提交
165 166

    Returns:
Y
yangyaming 已提交
167
        Variable: Output tensor, same data with input tensor.
Y
Yan Chunwei 已提交
168

Y
Yan Chunwei 已提交
169

Y
Yan Chunwei 已提交
170
    Examples:
Y
Yan Chunwei 已提交
171

Y
Yan Chunwei 已提交
172 173
        .. code-block:: python

Y
Yan Chunwei 已提交
174 175 176
           value = some_layer(...)
           Print(value, summarize=10,
               message="The content of some_layer: ")
Y
Yan Chunwei 已提交
177 178 179 180
    '''
    helper = LayerHelper('print', **locals())
    helper.append_op(
        type='print',
Y
yangyaming 已提交
181
        inputs={'In': input},
Y
Yan Chunwei 已提交
182 183 184 185 186 187 188 189
        attrs={
            'first_n': first_n,
            'summarize': summarize,
            'message': message or "",
            'print_tensor_name': print_tensor_name,
            'print_tensor_type': print_tensor_type,
            'print_tensor_shape': print_tensor_shape,
            'print_tensor_lod': print_tensor_lod,
Y
yangyaming 已提交
190
            'print_phase': print_phase.upper()
Y
Yu Yang 已提交
191
        })
192
    return input
Y
Yan Chunwei 已提交
193 194


Y
Yu Yang 已提交
195 196
class BlockGuard(object):
    """
197 198 199 200
    BlockGuard class.

    BlockGuard class is used to create a sub-block in a program by
    using the Python `with` keyword.
Y
Yu Yang 已提交
201 202
    """

203 204
    def __init__(self, main_program):
        if not isinstance(main_program, Program):
Y
Yu Yang 已提交
205
            raise TypeError("BlockGuard takes a program")
206
        self.main_program = main_program
Y
Yu Yang 已提交
207 208

    def __enter__(self):
W
Wu Yi 已提交
209
        self.main_program._create_block()
Y
Yu Yang 已提交
210 211

    def __exit__(self, exc_type, exc_val, exc_tb):
W
Wu Yi 已提交
212
        self.main_program._rollback()
Y
Yu Yang 已提交
213 214 215 216 217
        if exc_type is not None:
            return False  # re-raise exception
        return True


Y
Yang Yang 已提交
218 219 220 221 222
class BlockGuardWithCompletion(BlockGuard):
    """
    BlockGuardWithCompletion class.

    BlockGuardWithCompletion class is used to create an op with a block in a program.
223 224
    """

Y
Yu Yang 已提交
225
    def __init__(self, rnn):
X
Xin Pan 已提交
226
        if not isinstance(rnn, StaticRNN):
X
Xin Pan 已提交
227
            raise TypeError("BlockGuardWithCompletion takes a StaticRNN")
Y
Yang Yang 已提交
228
        super(BlockGuardWithCompletion, self).__init__(rnn.helper.main_program)
Y
Yu Yang 已提交
229 230 231 232
        self.rnn = rnn

    def __enter__(self):
        self.rnn.status = StaticRNN.IN_RNN_BLOCK
Y
Yang Yang 已提交
233
        return super(BlockGuardWithCompletion, self).__enter__()
Y
Yu Yang 已提交
234 235

    def __exit__(self, exc_type, exc_val, exc_tb):
Y
Yu Yang 已提交
236 237
        if exc_type is not None:
            return False
Y
Yu Yang 已提交
238
        self.rnn.status = StaticRNN.AFTER_RNN_BLOCK
239
        self.rnn._complete_op()
Y
Yang Yang 已提交
240 241
        return super(BlockGuardWithCompletion, self).__exit__(exc_type, exc_val,
                                                              exc_tb)
Y
Yu Yang 已提交
242 243 244 245


class StaticRNNMemoryLink(object):
    """
246 247 248 249
    StaticRNNMemoryLink class.

    StaticRNNMemoryLink class is used to create a link between two
    memory cells of a StaticRNN.
Y
yuyang18 已提交
250 251 252 253 254 255 256 257 258


    NOTE: This is a internal data structure of a very low-level API.
    Please use StaticRNN instead.

    Args:
        init(Variable): the initial variable for Memory.
        pre_mem(Variable): the memory variable in previous time step.
        mem(Variable): the memory variable in current time step.
Y
Yu Yang 已提交
259 260 261 262 263 264 265 266 267
    """

    def __init__(self, init, pre_mem, mem=None):
        self.init = init
        self.pre_mem = pre_mem
        self.mem = mem


class StaticRNN(object):
268 269 270
    """
    StaticRNN class.

C
chengduo 已提交
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    The StaticRNN can process a batch of sequence data. The length of each
    sample sequence must be equal. The StaticRNN will have its own parameters
    like inputs, outputs, memories. **Note that the first dimension of inputs
    represents sequence length, and all the sequence length of inputs must be
    the same. And the meaning of each axis of input and output are the same.**

    Examples:
        >>> import paddle.fluid as fluid
        >>> import paddle.fluid.layers as layers
        >>>
        >>> vocab_size, hidden_size=10000, 200
        >>> x = layers.data(name="x", shape=[-1, 1, 1], dtype='int64')
        >>> x_emb = layers.embedding(
        >>>         input=x,
        >>>         size=[vocab_size, hidden_size],
        >>>         dtype='float32',
        >>>         is_sparse=False)
        >>> x_emb = layers.transpose(x_emb, perm=[1, 0, 2])
        >>>
        >>> rnn = fluid.layers.StaticRNN()
        >>> with rnn.step():
        >>>    word = rnn.step_input(x_emb)
        >>>    prev = rnn.memory(shape=[-1, hidden_size], batch_ref = word)
        >>>    hidden = fluid.layers.fc(input=[word, prev], size=hidden_size, act='relu')
        >>>    rnn.update_memory(prev, hidden)  # set prev to hidden
        >>>    rnn.step_output(hidden)
        >>>
        >>> result = rnn()

    The StaticRNN will unfold sequence into time steps. Users need to define
    how to process each time step during the :code:`with` step.

    The :code:`memory` is used as a staging data cross time step. The initial
    value of memory can be a variable that is filled with a constant value or
    a specified variable.

    The StaticRNN can mark multiple variables as its output. Use `rnn()` to
    get the output sequence.
309
    """
Y
Yu Yang 已提交
310 311 312 313
    BEFORE_RNN_BLOCK = 0
    IN_RNN_BLOCK = 1
    AFTER_RNN_BLOCK = 2

314 315
    def __init__(self, name=None):
        self.helper = LayerHelper("static_rnn", name=name)
Y
Yu Yang 已提交
316 317 318 319 320 321 322 323
        self.memories = {}  # memory map, from pre_mem.name --> MemoryLink
        self.inputs = []  # input variable list in current block
        self.outputs = []  # output variable list in parent block
        self.status = StaticRNN.BEFORE_RNN_BLOCK  # status flag.
        # sequence length, since it is a static RNN, sequence length are fixed.
        self.seq_len = None

    def step(self):
C
chengduo 已提交
324 325 326
        """
        The block for user to define operators in RNN.
        """
Y
Yang Yang 已提交
327
        return BlockGuardWithCompletion(self)
Y
Yu Yang 已提交
328 329 330 331 332

    def _assert_in_rnn_block_(self, method):
        if self.status != StaticRNN.IN_RNN_BLOCK:
            raise ValueError("You must invoke {0} in rnn block".format(method))

333 334 335 336 337 338 339
    def memory(self,
               init=None,
               shape=None,
               batch_ref=None,
               init_value=0.0,
               init_batch_dim_idx=0,
               ref_batch_dim_idx=1):
340
        """
C
chengduo 已提交
341 342 343 344 345 346
        Create a memory variable for static rnn.

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this Variable. If the :code:`init` is None, :code:`shape` and :code:`batch_ref`
        must be set, and this function will initialize a :code:`init` Variable.

347
        Args:
C
chengduo 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362
            init(Variable|None): The initialized variable. If it is not set,
                :code:`shape` and :code:`batch_ref` must be provided.
                Default: None.
            shape(list|tuple): The shape of the boot memory. NOTE the shape
                does not contain batch_size. Default: None.
            batch_ref(Variable|None): The batch size reference Variable.
                Default: None.
            init_value(float): the init value of boot memory. Default: 0.0.
            init_batch_dim_idx(int): the batch_size axis of the
                :code:`init` Variable. Default: 0.
            ref_batch_dim_idx(int): the batch_size axis of the
                :code:`batch_ref` Variable. Default: 1.

        Returns:
            The memory variable.
363
        """
Y
Yu Yang 已提交
364 365
        self._assert_in_rnn_block_('memory')
        if init is None:
366
            if shape is None or batch_ref is None:
Y
Yu Yang 已提交
367
                raise ValueError(
368
                    "if init is None, memory at least need shape and batch_ref")
369
            parent_block = self._parent_block()
Y
Yu Yang 已提交
370 371
            var_name = unique_name.generate("@".join(
                [self.helper.name, "memory_boot"]))
Y
Yu Yang 已提交
372
            boot_var = parent_block.create_var(
373 374
                name=var_name,
                shape=shape,
F
fengjiayi 已提交
375
                dtype=batch_ref.dtype,
376
                persistable=False)
Y
Yu Yang 已提交
377 378

            parent_block.append_op(
379 380
                type="fill_constant_batch_size_like",
                inputs={'Input': [batch_ref]},
Y
Yu Yang 已提交
381 382 383
                outputs={'Out': [boot_var]},
                attrs={
                    'value': init_value,
384
                    'shape': boot_var.shape,
F
fengjiayi 已提交
385
                    'dtype': boot_var.dtype,
386 387
                    'input_dim_idx': ref_batch_dim_idx,
                    'output_dim_idx': init_batch_dim_idx
Y
Yu Yang 已提交
388 389 390 391 392
                })

            return self.memory(init=boot_var)
        else:
            pre_mem = self.helper.create_variable(
Y
Yu Yang 已提交
393
                name=unique_name.generate("@".join([self.helper.name, "mem"])),
F
fengjiayi 已提交
394
                dtype=init.dtype,
Y
Yu Yang 已提交
395 396 397 398 399 400
                shape=init.shape)
            self.memories[pre_mem.name] = StaticRNNMemoryLink(
                init=init, pre_mem=pre_mem)
            return pre_mem

    def step_input(self, x):
C
chengduo 已提交
401 402 403 404 405 406 407 408 409 410
        """
        Mark a sequence as a StaticRNN input.

        Args:
            x(Variable): The input sequence, the shape of x
                should be [seq_len, ...].

        Returns:
            The current time step in the input sequence.
        """
Y
Yu Yang 已提交
411 412 413 414
        self._assert_in_rnn_block_('step_input')
        if not isinstance(x, Variable):
            raise TypeError("step input takes a Variable")
        if self.seq_len is None:
Y
Yu Yang 已提交
415 416
            self.seq_len = x.shape[0]
        elif self.seq_len != x.shape[0]:
Y
Yu Yang 已提交
417 418 419
            raise ValueError("Static RNN only take fix seq_len input")

        ipt = self.helper.create_variable(
F
fengjiayi 已提交
420
            name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type)
Y
Yu Yang 已提交
421 422 423 424
        self.inputs.append(ipt)
        return ipt

    def step_output(self, o):
C
chengduo 已提交
425 426 427 428 429 430 431 432 433
        """
        Mark a sequence as a StaticRNN output.

        Args:
            o(Variable): The output sequence.

        Returns:
            None.
        """
Y
Yu Yang 已提交
434 435 436 437
        self._assert_in_rnn_block_('step_output')
        if not isinstance(o, Variable):
            raise TypeError("step output takes a Variable")

X
Xin Pan 已提交
438
        tmp_o = self.helper.create_variable_for_type_inference(dtype=o.dtype)
Y
Yu Yang 已提交
439 440 441 442
        self.helper.append_op(
            type='rnn_memory_helper',
            inputs={'X': [o]},
            outputs={'Out': tmp_o},
F
fengjiayi 已提交
443
            attrs={'dtype': o.dtype})
Y
Yu Yang 已提交
444

445
        out_var = self._parent_block().create_var(
Y
Yu Yang 已提交
446 447
            name=tmp_o.name,
            shape=[self.seq_len] + list(tmp_o.shape),
F
fengjiayi 已提交
448
            dtype=tmp_o.dtype)
Y
Yu Yang 已提交
449 450 451 452

        self.outputs.append(out_var)

    def output(self, *outputs):
C
chengduo 已提交
453 454 455 456 457 458 459 460 461
        """
        Mark the StaticRNN output variables.

        Args:
            outputs: The output Variables.

        Returns:
            None
        """
Y
Yu Yang 已提交
462 463 464 465
        for each in outputs:
            self.step_output(each)

    def update_memory(self, mem, var):
C
chengduo 已提交
466 467 468 469 470 471 472 473 474 475 476
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.

        Args:
            mem(Variable): the memory variable.
            var(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
Y
Yu Yang 已提交
477 478 479 480
        if not isinstance(mem, Variable) or not isinstance(var, Variable):
            raise TypeError("update memory should take variables")
        self.memories[mem.name].mem = var

481
    def _parent_block(self):
482
        prog = self.helper.main_program
Y
Yu Yang 已提交
483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)
        return parent_block

    def __call__(self, *args, **kwargs):
        if self.status != StaticRNN.AFTER_RNN_BLOCK:
            raise ValueError("RNN output can only be retrieved after rnn block")
        if len(self.outputs) == 0:
            raise ValueError("RNN has no output")
        elif len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

498
    def _complete_op(self):
499 500
        main_program = self.helper.main_program
        rnn_block = main_program.current_block()
501
        parent_block = self._parent_block()
Y
Yu Yang 已提交
502 503 504 505 506 507 508 509 510 511 512 513 514 515

        local_inputs = set()

        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    local_inputs.add(out_var_name)

        for var in self.inputs:
            local_inputs.add(var.name)
        for m in self.memories:
            local_inputs.add(m)

C
chengduo 已提交
516 517 518
        # NOTE(zcd): the params have two categories of variables.
        #   - the variables that are the out of StaticRnn.
        #   - the variables that are the parameters of some layers, for example, conv2d.
Y
Yu Yang 已提交
519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
        params = list()
        for op in rnn_block.ops:
            assert isinstance(op, Operator)
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in local_inputs:
                        params.append(in_var_name)

        parameters = [parent_block.var(name) for name in params]

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        inlinks = [parent_block.var(i.name) for i in self.inputs]
        outlinks = self.outputs

C
chengduo 已提交
535
        # NOTE(zcd): the states maybe empty in some case.
Y
Yu Yang 已提交
536 537 538
        boot_memories = []
        pre_memories = []
        memories = []
M
minqiyang 已提交
539
        for _, mem in six.iteritems(self.memories):
Y
Yu Yang 已提交
540 541
            boot_memories.append(mem.init)
            pre_memories.append(mem.pre_mem.name)
C
chengduo 已提交
542 543
            assert mem.mem is not None, "%s should be updated in every step." % (
                mem.init.name)
Y
Yu Yang 已提交
544 545
            mem_var = rnn_block.var(mem.mem.name)
            assert isinstance(mem_var, Variable)
X
Xin Pan 已提交
546 547
            new_mem = self.helper.create_variable_for_type_inference(
                dtype=mem_var.dtype)
Y
Yu Yang 已提交
548 549 550 551
            rnn_block.append_op(
                type='rnn_memory_helper',
                inputs={'X': [mem_var]},
                outputs={'Out': [new_mem]},
F
fengjiayi 已提交
552
                attrs={'dtype': mem_var.dtype})
Y
Yu Yang 已提交
553 554 555 556 557 558 559 560 561 562 563 564 565

            memories.append(new_mem.name)

        parent_block.append_op(
            type='recurrent',
            inputs={
                'inputs': inlinks,
                'initial_states': boot_memories,
                'parameters': parameters
            },
            outputs={'outputs': outlinks,
                     'step_scopes': [step_scope]},
            attrs={
C
chengduo 已提交
566
                'has_states': len(pre_memories) > 0,
Y
Yu Yang 已提交
567 568
                'ex_states': pre_memories,
                'states': memories,
569
                'sub_block': rnn_block
Y
Yu Yang 已提交
570
            })
Y
Yu Yang 已提交
571 572


Y
Yang Yang(Tony) 已提交
573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
class WhileGuard(BlockGuard):
    def __init__(self, while_op):
        if not isinstance(while_op, While):
            raise TypeError("WhileGuard takes a while op")
        super(WhileGuard, self).__init__(while_op.helper.main_program)
        self.while_op = while_op

    def __enter__(self):
        self.while_op.status = While.IN_WHILE_BLOCK
        return super(WhileGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if exc_type is not None:
            return False
        self.while_op.status = While.AFTER_WHILE_BLOCK
588
        self.while_op._complete()
Y
Yang Yang(Tony) 已提交
589 590 591 592
        return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb)


class While(object):
X
Xin Pan 已提交
593 594 595 596
    """
    while loop control flow.

    Args:
597
        cond(Variable): condition used to compare.
C
chengduo 已提交
598
        is_test(bool): A flag indicating whether execution is in test phase.
599
        name(str): The name of this layer.
X
Xin Pan 已提交
600 601 602 603

    Examples:
          .. code-block:: python

X
Xin Pan 已提交
604 605 606
            d0 = layers.data("d0", shape=[10], dtype='float32')
            data_array = layers.array_write(x=d0, i=i)
            array_len = layers.fill_constant(shape=[1],dtype='int64', value=3)
X
Xin Pan 已提交
607

X
Xin Pan 已提交
608 609 610 611 612 613 614
            cond = layers.less_than(x=i, y=array_len)
            while_op = layers.While(cond=cond)
            with while_op.block():
                d = layers.array_read(array=data_array, i=i)
                i = layers.increment(x=i, in_place=True)
                layers.array_write(result, i=i, array=d)
                layers.less_than(x=i, y=array_len, cond=cond)
X
Xin Pan 已提交
615 616
    """

Y
Yang Yang(Tony) 已提交
617 618 619 620
    BEFORE_WHILE_BLOCK = 0
    IN_WHILE_BLOCK = 1
    AFTER_WHILE_BLOCK = 2

C
chengduo 已提交
621
    def __init__(self, cond, is_test=False, name=None):
622
        self.helper = LayerHelper("while", name=name)
Y
Yang Yang(Tony) 已提交
623 624 625 626
        self.status = While.BEFORE_WHILE_BLOCK
        if not isinstance(cond, Variable):
            raise TypeError("condition should be a variable")
        assert isinstance(cond, Variable)
627
        if cond.dtype != core.VarDesc.VarType.BOOL:
Y
Yang Yang(Tony) 已提交
628 629 630 631
            raise TypeError("condition should be a bool variable")
        if reduce(lambda a, b: a * b, cond.shape, 1) != 1:
            raise TypeError("condition should be a bool scalar")
        self.cond_var = cond
C
chengduo 已提交
632
        self.is_test = is_test
Y
Yang Yang(Tony) 已提交
633 634 635 636

    def block(self):
        return WhileGuard(self)

637
    def _complete(self):
Y
Yang Yang(Tony) 已提交
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
        main_program = self.helper.main_program
        while_block = main_program.current_block()
        parent_block = main_program.block(main_program.current_block()
                                          .parent_idx)

        inner_outputs = {self.cond_var.name}
        x_name_list = set()
        for op in while_block.ops:
            for iname in op.input_names:
                for in_var_name in op.input(iname):
                    if in_var_name not in inner_outputs:
                        x_name_list.add(in_var_name)

            for oname in op.output_names:
                for out_var_name in op.output(oname):
                    inner_outputs.add(out_var_name)

        out_vars = []
        for inner_out_name in inner_outputs:
X
Xin Pan 已提交
657 658 659
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_vars.append(inner_var)
Y
Yang Yang(Tony) 已提交
660 661 662 663 664 665 666

        step_scope = parent_block.create_var(
            type=core.VarDesc.VarType.STEP_SCOPES)

        parent_block.append_op(
            type='while',
            inputs={
W
Wu Yi 已提交
667 668 669 670
                'X': [
                    parent_block._var_recursive(x_name)
                    for x_name in x_name_list
                ],
Y
Yang Yang(Tony) 已提交
671 672 673 674
                'Condition': [self.cond_var]
            },
            outputs={'Out': out_vars,
                     'StepScopes': [step_scope]},
C
chengduo 已提交
675 676
            attrs={'sub_block': while_block,
                   "is_test": self.is_test})
Y
Yang Yang(Tony) 已提交
677 678


679
def lod_rank_table(x, level=0):
680 681
    """
    LoD Rank Table Operator. Given an input variable **x** and a level number
Y
yangyaming 已提交
682 683
    of LoD, this layer creates a LodRankTable object. A LoDRankTable object
    contains a list of bi-element tuples. Each tuple consists of an index and
684
    a length, both of which are int type. Refering to specified level of LoD,
Y
yangyaming 已提交
685 686 687
    the index is the sequence index number and the length representes the
    sequence length. Please note that the list is ranked in descending order by
    the length. The following is an example:
Y
yangyaming 已提交
688 689 690 691

        .. code-block:: text

            x is a LoDTensor:
692 693
                x.lod = [[2,                1],
                         [5,             1, 1]]
Y
yangyaming 已提交
694 695
                x.data = [a, b, c, d, e, f, g]

Y
yangyaming 已提交
696 697 698
            1. set level to 0:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=0)
Y
yangyaming 已提交
699

Y
yangyaming 已提交
700 701 702 703 704 705 706 707 708
                Get:
                    lod_rank_table_obj.items() = [(0, 2), (1, 1)]

            2. set level to 1:
                Create lod rank table:
                    lod_rank_table_obj = lod_rank_table(x, level=1)

                Get:
                    lod_rank_table_obj.items() = [(0, 5), (1, 1), (2, 1)]
Y
yangyaming 已提交
709 710 711 712

    Args:
        x (Variable): Input variable, a LoDTensor based which to create the lod
            rank table.
Y
yangyaming 已提交
713 714
        level (int): Specify the LoD level, on which to create the lod rank
            table.
Y
yangyaming 已提交
715 716 717 718 719 720 721 722

    Returns:
        Variable: The created LoDRankTable object.

    Examples:
        .. code-block:: python

            x = fluid.layers.data(name='x', shape=[10],
723
                                  dtype='float32', lod_level=1)
Y
yangyaming 已提交
724
            out = layers.lod_rank_table(x=x, level=0)
725
    """
Y
Yu Yang 已提交
726 727 728
    helper = LayerHelper("lod_rank_table", **locals())
    table = helper.create_variable(
        type=core.VarDesc.VarType.LOD_RANK_TABLE,
Y
Yu Yang 已提交
729
        name=unique_name.generate("lod_rank_table"))
Y
Yu Yang 已提交
730 731 732 733 734 735
    helper.append_op(
        type='lod_rank_table',
        inputs={'X': x},
        outputs={'Out': table},
        attrs={'level': level})
    return table
Y
Yu Yang 已提交
736 737


Y
yuyang18 已提交
738
@templatedoc()
739
def max_sequence_len(rank_table):
Y
yuyang18 已提交
740 741 742 743 744 745 746 747
    """
    ${comment}

    >>> import paddle.fluid as fluid
    >>> x = fluid.layers.data(name='x', shape=[10], dtype='float32',
    >>>                       lod_level=1)
    >>> rank_table = layers.lod_rank_table(x=x, level=0)
    >>> max_seq_len = layers.max_sequence_len(rank_table)
Y
yangyaming 已提交
748 749

    Args:
Y
yuyang18 已提交
750
        rank_table(${rank_table_type}): ${rank_table_comment}.
Y
yangyaming 已提交
751 752

    Returns:
Y
yuyang18 已提交
753
        ${out_comment}.
F
fengjiayi 已提交
754 755
    """
    helper = LayerHelper("max_seqence_len", **locals())
X
Xin Pan 已提交
756
    res = helper.create_variable_for_type_inference(dtype="int64")
F
fengjiayi 已提交
757 758 759 760 761 762 763
    helper.append_op(
        type="max_sequence_len",
        inputs={"RankTable": rank_table},
        outputs={"Out": res})
    return res


764
def lod_tensor_to_array(x, table):
765
    """
F
fengjiayi 已提交
766 767
    Convert a LoDTensor to a LoDTensorArray.

768 769 770 771 772
    This function split a LoDTesnor to a LoDTensorArray according to its LoD
    information. LoDTensorArray is an alias of C++ std::vector<LoDTensor> in
    PaddlePaddle. The generated LoDTensorArray of this function can be further read
    or written by `read_from_array()` and `write_to_array()` operators. However,
    this function is generally an internal component of PaddlePaddle `DynamicRNN`.
F
fengjiayi 已提交
773
    Users should not use it directly.
774 775

    Args:
F
fengjiayi 已提交
776
        x (Variable|list): The LoDTensor to be converted to a LoDTensorArray.
777 778
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
779
                                descending order. It is generally generated
F
fengjiayi 已提交
780
                                by `layers.lod_rank_table()` API.
781 782

    Returns:
F
fengjiayi 已提交
783
        Variable: The LoDTensorArray that has been converted from the input tensor.
784 785 786 787 788 789 790

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
791
    """
792 793
    helper = LayerHelper("lod_tensor_to_array", **locals())
    array = helper.create_variable(
Y
Yu Yang 已提交
794
        name=unique_name.generate("lod_tensor_to_array"),
795
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
796
        dtype=x.dtype)
797 798 799 800 801 802 803 804
    helper.append_op(
        type='lod_tensor_to_array',
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': array})
    return array


805
def array_to_lod_tensor(x, table):
806
    """Convert a LoD_Tensor_Aarry to an LoDTensor.
807 808

    Args:
809
        x (Variable|list): The lod tensor array to be converted to a tensor.
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824
        table (ParamAttr|list): The variable that stores the level of lod
                                which is ordered by sequence length in
                                descending order.

    Returns:
        Variable: The variable of type tensor that has been converted
                  from an array.

    Examples:
        .. code-block:: python

          x = fluid.layers.data(name='x', shape=[10])
          table = fluid.layers.lod_rank_table(x, level=0)
          array = fluid.layers.lod_tensor_to_array(x, table)
          lod_tensor = fluid.layers.array_to_lod_tensor(array, table)
825
    """
826
    helper = LayerHelper("array_to_lod_tensor", **locals())
X
Xin Pan 已提交
827
    tmp = helper.create_variable_for_type_inference(dtype=x.dtype)
828 829 830 831 832 833 834 835
    helper.append_op(
        type="array_to_lod_tensor",
        inputs={'X': x,
                'RankTable': table},
        outputs={'Out': tmp})
    return tmp


836
def increment(x, value=1.0, in_place=True):
837
    """
S
sneaxiy 已提交
838
    This function performs an operation that increments the value in the
839
    input :math:`x` by an amount: :math:`value` as mentioned in the input
S
sneaxiy 已提交
840 841
    parameter. This operation is performed in-place by default. Notice that
    the number of elements in :math:`x` must be equal to 1.
842 843 844 845 846 847 848

    Args:
        x (Variable|list): The tensor that has the input values.
        value (float): The amount by which the values should be incremented.
        in_place (bool): If the increment should be performed in-place.

    Returns:
D
dzhwinter 已提交
849
        Variable: The elementwise-incremented object.
850 851 852 853

    Examples:
        .. code-block:: python

S
sneaxiy 已提交
854 855
          data = fluid.layers.data(name='data', shape=[1], dtype='float32',
                                   append_batch_size=False)
856
          data = fluid.layers.increment(x=data, value=3.0, in_place=True)
857
    """
Y
Yu Yang 已提交
858
    helper = LayerHelper("increment", **locals())
Y
Yang Yang(Tony) 已提交
859
    if not in_place:
X
Xin Pan 已提交
860
        out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yang(Tony) 已提交
861 862
    else:
        out = x
Y
Yu Yang 已提交
863 864 865
    helper.append_op(
        type='increment',
        inputs={'X': [x]},
Y
Yang Yu 已提交
866
        outputs={'Out': [out]},
867
        attrs={'step': float(value)})
Y
Yang Yu 已提交
868
    return out
Y
Yu Yang 已提交
869 870


871
def array_write(x, i, array=None):
872 873 874 875 876
    """
    This function writes the given input variable to the specified position
    indicating by the arrary index to an output LOD_TENSOR_ARRAY. If the
    output LOD_TENSOR_ARRAY is not given(None), a new one will be created and
    returned.
877 878 879

    Args:
        x (Variable|list): The input tensor from which the data will be read.
880 881 882 883 884 885 886 887
        i (Variable|list): The index of the output LOD_TENSOR_ARRAY, pointing to
                           the position to which the input tensor will be
                           written.
        array (Variable|list): The output LOD_TENSOR_ARRAY to which the input
                               tensor will be written. If this parameter is
                               NONE, a new LOD_TENSOR_ARRAY will be created and
                               returned.

888
    Returns:
889
        Variable: The output LOD_TENSOR_ARRAY where the input tensor is written.
890 891

    Examples:
D
dzhwinter 已提交
892
        .. code-block:: python
893 894 895 896

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = layers.array_write(tmp, i=i)
897
    """
Y
Yu Yang 已提交
898 899 900 901 902
    helper = LayerHelper('array_write', **locals())
    if array is None:
        array = helper.create_variable(
            name="{0}.out".format(helper.name),
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
F
fengjiayi 已提交
903
            dtype=x.dtype)
Y
Yu Yang 已提交
904 905 906 907 908 909 910 911
    helper.append_op(
        type='write_to_array',
        inputs={'X': [x],
                'I': [i]},
        outputs={'Out': [array]})
    return array


912
def create_array(dtype):
913
    """
Q
qiaolongfei 已提交
914
    **Create LoDTensorArray**
915

Q
qiaolongfei 已提交
916 917
    This function creates an array of LOD_TENSOR_ARRAY . It is mainly used to
    implement RNN with array_write, array_read and While.
918 919

    Args:
Q
qiaolongfei 已提交
920
        dtype (int|float): The data type of the elements in the lod_tensor_array.
921 922

    Returns:
923
        Variable: The lod_tensor_array variable storing the elements of data type.
924 925 926 927 928 929 930

    Examples:
        .. code-block:: python

          data = fluid.layers.create_array(dtype='float32')

    """
Y
Yang Yang(Tony) 已提交
931 932 933 934 935 936 937
    helper = LayerHelper("array", **locals())
    return helper.create_variable(
        name="{0}.out".format(helper.name),
        type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
        dtype=dtype)


Y
yuyang18 已提交
938
@templatedoc()
939
def less_than(x, y, force_cpu=None, cond=None):
940
    """
Y
yuyang18 已提交
941
    ${comment}
942

Y
yuyang18 已提交
943 944
    >>> import paddle.fluid as fluid
    >>> less = fluid.layers.less_than(x=label, y=limit)
945 946

    Args:
Y
yuyang18 已提交
947 948 949
        x(${x_type}): ${x_comment}.
        y(${y_type}): ${y_comment}.
        force_cpu(${force_cpu_type}): ${force_cpu_comment}.
950 951 952
        cond(Variable|None): Optional output variable to store the result of *less_than*

    Returns:
Y
yuyang18 已提交
953
        ${out_comment}.
954
    """
Y
Yang Yang(Tony) 已提交
955 956
    helper = LayerHelper("less_than", **locals())
    if cond is None:
X
Xin Pan 已提交
957
        cond = helper.create_variable_for_type_inference(dtype='bool')
Y
Yang Yang(Tony) 已提交
958 959
        cond.stop_gradient = True

Y
yuyang18 已提交
960 961 962 963 964 965
    attrs = dict()
    if force_cpu is not None:
        attrs['force_cpu'] = force_cpu
    elif force_init_on_cpu():
        attrs['force_cpu'] = force_init_on_cpu()

Y
Yang Yang(Tony) 已提交
966
    helper.append_op(
J
JiayiFeng 已提交
967 968 969 970
        type='less_than',
        inputs={'X': [x],
                'Y': [y]},
        outputs={'Out': [cond]},
Y
yuyang18 已提交
971
        attrs=attrs)
Y
Yang Yang(Tony) 已提交
972 973 974
    return cond


975
def equal(x, y, cond=None):
976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993
    """
    This layer returns the truth value of :math:`x == y` elementwise.

    Args:
        x(Variable): First operand of *equal*
        y(Variable): Second operand of *equal*
        cond(Variable|None): Optional output variable to store the result of *equal*

    Returns:
        Variable: The tensor variable storing the output of *equal*.

    Examples:
        .. code-block:: python

          less = fluid.layers.equal(x=label, y=limit)
    """
    helper = LayerHelper("equal", **locals())
    if cond is None:
X
Xin Pan 已提交
994
        cond = helper.create_variable_for_type_inference(dtype='bool')
995 996 997 998 999 1000 1001 1002
        cond.stop_gradient = True

    helper.append_op(
        type='equal', inputs={'X': [x],
                              'Y': [y]}, outputs={'Out': [cond]})
    return cond


1003
def array_read(array, i):
1004 1005
    """
    This function performs the operation to read the data in as an
1006
    LOD_TENSOR_ARRAY.
1007 1008 1009 1010 1011 1012

    .. code-block:: text

        Given:

        array = [0.6, 0.1, 0.3, 0.1]
1013

1014
        And:
1015

1016 1017 1018 1019 1020 1021
        i = 2

        Then:

        output = 0.3

K
kavyasrinet 已提交
1022
    Args:
1023 1024 1025
        array (Variable|list): The input tensor that store data to be read.
        i (Variable|list): The index of the data to be read from input array.

K
kavyasrinet 已提交
1026 1027
    Returns:
        Variable: The tensor type variable that has the data written to it.
1028

K
kavyasrinet 已提交
1029
    Examples:
1030 1031
        .. code-block:: python

Z
zhaoyuchen 已提交
1032
          array = fluid.layers.create_array(dtype='float32')
K
kavyasrinet 已提交
1033
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
Z
zhaoyuchen 已提交
1034
          item = fluid.layers.array_read(array, i)
1035
    """
Y
Yu Yang 已提交
1036 1037 1038 1039 1040
    helper = LayerHelper('array_read', **locals())
    if not isinstance(
            array,
            Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY:
        raise TypeError("array should be tensor array vairable")
X
Xin Pan 已提交
1041
    out = helper.create_variable_for_type_inference(dtype=array.dtype)
Y
Yu Yang 已提交
1042 1043 1044 1045 1046 1047
    helper.append_op(
        type='read_from_array',
        inputs={'X': [array],
                'I': [i]},
        outputs={'Out': [out]})
    return out
Y
Yang Yu 已提交
1048 1049


1050
def shrink_memory(x, i, table):
1051
    """
Y
yuyang18 已提交
1052
    This function creates an operator to shrink rnn memory using the RankTable
1053
    as mentioned in the input parameter.
Y
yuyang18 已提交
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073

    NOTE: This API is very low-level API. It is used by DynamicRNN only.

    Since the Dynamic RNN uses no-padding way to implement RNN. The sequence
    will be sorted by order, and the length of valid memory will be shrink after
    each time step.

    Args:
        x(Variable): The memory object in the previous time step.
        i(Variable): The step count variable. A int scalar as LoDTensor.
        table(Variable): The RNNRankTable object.

    Returns:
        the memory variable after shrink.

    Examples:

        Since this API is very low level API. The example is not provided.
        Please reference the implementation of class DynamicRNN for detail
        usage.
1074
    """
Y
Yang Yu 已提交
1075
    helper = LayerHelper('shrink_memory', **locals())
X
Xin Pan 已提交
1076
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1077
    helper.append_op(
Y
Yang Yu 已提交
1078
        type='shrink_rnn_memory',
Y
Yang Yu 已提交
1079 1080 1081 1082 1083 1084
        inputs={'X': [x],
                'I': [i],
                'RankTable': [table]},
        outputs={'Out': [out]},
        attrs={})
    return out
Y
Yang Yu 已提交
1085 1086


1087
def array_length(array):
1088
    """
Q
qiaolongfei 已提交
1089
    **Get the Length of Input LoDTensorArray**
1090 1091

    This function performs the operation to find the length of the input
1092
    LOD_TENSOR_ARRAY.
K
kavyasrinet 已提交
1093

1094 1095
    Related API: array_read, array_write, While.

K
kavyasrinet 已提交
1096 1097 1098 1099 1100 1101 1102 1103
    Args:
        array (LOD_TENSOR_ARRAY): The input array that will be used
                                  to compute the length.

    Returns:
        Variable: The length of the input LoDTensorArray.

    Examples:
Q
qiaolongfei 已提交
1104
        .. code-block:: python
K
kavyasrinet 已提交
1105 1106 1107 1108 1109

          tmp = fluid.layers.zeros(shape=[10], dtype='int32')
          i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10)
          arr = fluid.layers.array_write(tmp, i=i)
          arr_len = fluid.layers.array_length(arr)
Q
qiaolongfei 已提交
1110

1111
    """
Y
Yang Yu 已提交
1112
    helper = LayerHelper('array_length', **locals())
X
Xin Pan 已提交
1113
    tmp = helper.create_variable_for_type_inference(dtype='int64')
Y
Yang Yu 已提交
1114 1115 1116 1117
    tmp.stop_gradient = True
    helper.append_op(
        type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]})
    return tmp
Y
Yu Yang 已提交
1118 1119 1120


class ConditionalBlockGuard(BlockGuard):
F
fengjiayi 已提交
1121
    """
1122 1123 1124
    ConditionalBlockGuard is derived from BlockGuard. It is dedicated for
    holding a ConditionalBlock, and helping users entering and exiting the
    ConditionalBlock via Python's 'with' keyword. However, ConditionalBlockGuard
F
fengjiayi 已提交
1125 1126 1127
    is generally an internal component of IfElse, users should not use it directly.
    """

Y
Yu Yang 已提交
1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    def __init__(self, block):
        if not isinstance(block, ConditionalBlock):
            raise TypeError("block should be conditional block")
        super(ConditionalBlockGuard, self).__init__(block.helper.main_program)
        self.block = block

    def __enter__(self):
        return super(ConditionalBlockGuard, self).__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.block.complete()
        return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val,
                                                           exc_tb)


class ConditionalBlock(object):
Y
Yan Chunwei 已提交
1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168
    '''
    **ConditionalBlock**

    ConditionalBlock is an operator that bind a block to a specific condition,
    if the condition matches, the corresponding block will be executed.

    Args:
        inputs (Variable): bool conditions.
        is_scalar_condition (bool): whether the branch is controled by a scalar.
        name(str): name of this ConditionalBlock.

    Examples:
        .. code-block:: python

             cond = layers.less_than(x=label, y=limit)
             true_image, false_image = layers.split_lod_tensor(
                 input=image, mask=cond)
             true_cond = layers.ConditionalBlock([true_image])

             with true_cond.block():
                 ...
             with false_cond.block():
                 ...
    '''

1169
    def __init__(self, inputs, is_scalar_condition=False, name=None):
Y
Yu Yang 已提交
1170 1171 1172 1173
        for each_input in inputs:
            if not isinstance(each_input, Variable):
                raise TypeError("Each input should be variable")
        self.inputs = inputs
1174
        self.is_scalar_condition = is_scalar_condition
1175
        self.helper = LayerHelper('conditional_block', name=name)
Y
Yu Yang 已提交
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199

    def block(self):
        return ConditionalBlockGuard(self)

    def complete(self):
        inside_block = self.helper.main_program.current_block()
        parent_block = self.helper.main_program.block(inside_block.parent_idx)

        intermediate = set()
        params = set()

        for each_op in inside_block.ops:
            assert isinstance(each_op, Operator)
            for iname in each_op.input_names:
                for in_var_name in each_op.input(iname):
                    if in_var_name not in intermediate:
                        params.add(in_var_name)

            for oname in each_op.output_names:
                for out_var_name in each_op.output(oname):
                    intermediate.add(out_var_name)
        input_set = set([ipt.name for ipt in self.inputs])

        param_list = [
W
Wu Yi 已提交
1200
            parent_block._var_recursive(each_name) for each_name in params
Y
Yu Yang 已提交
1201 1202 1203
            if each_name not in input_set
        ]

X
Xin Pan 已提交
1204 1205 1206 1207 1208
        out_list = []
        for inner_out_name in intermediate:
            inner_var = parent_block._find_var_recursive(inner_out_name)
            if inner_var:
                out_list.append(inner_var)
Y
Yu Yang 已提交
1209 1210

        step_scope = parent_block.create_var(
1211
            type=core.VarDesc.VarType.STEP_SCOPES)
Y
Yu Yang 已提交
1212 1213 1214
        parent_block.append_op(
            type='conditional_block',
            inputs={
1215 1216
                'Cond': self.inputs,
                'Input': param_list,
Y
Yu Yang 已提交
1217 1218 1219
            },
            outputs={'Out': out_list,
                     'Scope': [step_scope]},
1220 1221 1222 1223 1224 1225 1226
            attrs={
                'sub_block': inside_block,
                'is_scalar_condition': self.is_scalar_condition
            })


class Switch(object):
Q
qiaolongfei 已提交
1227
    """
Q
qiaolongfei 已提交
1228 1229
    Switch class works just like a `if-elif-else`. Can be used in learning rate scheduler
    to modify learning rate
Q
qiaolongfei 已提交
1230 1231 1232 1233

    The Semantics:

    1. A `switch` control-flow checks cases one-by-one.
Q
qiaolongfei 已提交
1234

Q
qiaolongfei 已提交
1235
    2. The condition of each case is a boolean value, which is a scalar Variable.
Q
qiaolongfei 已提交
1236 1237 1238 1239

    3. It runs the first matched case, or the default case if there is one.

    4. Once it matches a case, it runs the corresponding branch and only that branch.
Q
qiaolongfei 已提交
1240 1241 1242 1243

    Examples:
        .. code-block:: python

Q
qiaolongfei 已提交
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
            lr = fluid.layers.tensor.create_global_var(
                shape=[1],
                value=0.0,
                dtype='float32',
                persistable=True,
                name="learning_rate")
            one_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=1.0)
            two_var = tensor.fill_constant(
                shape=[1], dtype='float32', value=2.0)

            with fluid.layers.control_flow.Switch() as switch:
Q
qiaolongfei 已提交
1256
                with switch.case(global_step == zero_var):
Q
qiaolongfei 已提交
1257 1258 1259
                    fluid.layers.tensor.assign(input=one_var, output=lr)
                with switch.default():
                    fluid.layers.tensor.assign(input=two_var, output=lr)
Q
qiaolongfei 已提交
1260 1261 1262

    """

1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291
    def __init__(self, name=None):
        self.helper = LayerHelper('switch', name=name)
        self.inside_scope = False
        self.pre_not_conditions = []

    def case(self, condition):
        """create a new block for this condition
        """
        if not self.inside_scope:
            raise ValueError("case should be called inside with")

        if len(self.pre_not_conditions) == 0:
            cond_block = ConditionalBlock([condition], is_scalar_condition=True)
            not_cond = logical_not(x=condition)
            self.pre_not_conditions.append(not_cond)
        else:
            pre_cond_num = len(self.pre_not_conditions)
            pre_not_cond = self.pre_not_conditions[pre_cond_num - 1]
            new_not_cond = logical_and(
                x=pre_not_cond, y=logical_not(x=condition))
            self.pre_not_conditions.append(new_not_cond)
            cond_block = ConditionalBlock(
                [logical_and(
                    x=pre_not_cond, y=condition)],
                is_scalar_condition=True)

        return ConditionalBlockGuard(cond_block)

    def default(self):
Q
qiaolongfei 已提交
1292 1293
        """
        create a default case for this switch
1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
        """
        pre_cond_num = len(self.pre_not_conditions)
        if pre_cond_num == 0:
            raise ValueError("there should be at least one condition")
        cond_block = ConditionalBlock(
            [self.pre_not_conditions[pre_cond_num - 1]],
            is_scalar_condition=True)
        return ConditionalBlockGuard(cond_block)

    def __enter__(self):
        """
        set flag that now is inside switch.block {}
        :return:
        """
        self.inside_scope = True
        return self

    def __exit__(self, exc_type, exc_val, exc_tb):
        self.inside_scope = False
        if exc_type is not None:
            return False  # re-raise exception

        return True
Y
Yu Yang 已提交
1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352


class IfElseBlockGuard(object):
    def __init__(self, is_true, ifelse):
        if not isinstance(ifelse, IfElse):
            raise TypeError("ifelse must be an instance of IfElse class")

        if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("You cannot invoke IfElse.block() inside a block")

        self.is_true = is_true
        self.ie = ifelse
        if is_true:
            self.cond_block = ifelse.conditional_true_block
        else:
            self.cond_block = ifelse.conditional_false_block

        if not isinstance(self.cond_block, ConditionalBlock):
            raise TypeError("Unexpected situation")

        self.cond_block = self.cond_block.block()

    def __enter__(self):
        self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS
        self.cond_block.__enter__()

    def __exit__(self, exc_type, exc_val, exc_tb):
        if not self.cond_block.__exit__(exc_type, exc_val, exc_tb):
            # re-raise inside exception
            return False
        if len(self.ie.output_table[1 if self.is_true else 0]) == 0:
            raise ValueError("Must set output inside block")
        self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS


class IfElse(object):
X
Xin Pan 已提交
1353 1354 1355 1356 1357 1358 1359 1360 1361
    """
    if-else control flow.

    Args:
        cond (Variable): condition used to compare.
        name (str, default None): The name of this layer.

    Examples:
          .. code-block:: python
X
Xin Pan 已提交
1362

X
improve  
Xin Pan 已提交
1363
            limit = fluid.layers.fill_constant_batch_size_like(
X
Xin Pan 已提交
1364
                input=label, dtype='int64', shape=[1], value=5.0)
X
improve  
Xin Pan 已提交
1365 1366
            cond = fluid.layers.less_than(x=label, y=limit)
            ie = fluid.layers.IfElse(cond)
X
Xin Pan 已提交
1367 1368
            with ie.true_block():
                true_image = ie.input(image)
X
improve  
Xin Pan 已提交
1369 1370
                hidden = fluid.layers.fc(input=true_image, size=100, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1371 1372 1373 1374
                ie.output(prob)

            with ie.false_block():
                false_image = ie.input(image)
X
improve  
Xin Pan 已提交
1375 1376 1377
                hidden = fluid.layers.fc(
                    input=false_image, size=200, act='tanh')
                prob = fluid.layers.fc(input=hidden, size=10, act='softmax')
X
Xin Pan 已提交
1378 1379 1380
                ie.output(prob)
            prob = ie()
    """
Y
Yu Yang 已提交
1381 1382 1383 1384
    OUT_IF_ELSE_BLOCKS = 0
    IN_IF_ELSE_TRUE_BLOCKS = 1
    IN_IF_ELSE_FALSE_BLOCKS = 2

1385
    def __init__(self, cond, name=None):
Y
Yu Yang 已提交
1386 1387
        if not isinstance(cond, Variable):
            raise TypeError("cond must be a Variable")
1388
        self.helper = LayerHelper('ifelse', name=name)
Y
Yu Yang 已提交
1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399
        self.cond = cond
        self.input_table = {}
        self.status = IfElse.OUT_IF_ELSE_BLOCKS
        self.conditional_true_block = ConditionalBlock(inputs=[self.cond])
        self.conditional_false_block = ConditionalBlock(inputs=[self.cond])
        self.output_table = ([], [])  # (true_outs, false_outs)

    def input(self, x):
        if self.status == IfElse.OUT_IF_ELSE_BLOCKS:
            raise ValueError("input must in true/false blocks")
        if id(x) not in self.input_table:
1400
            parent_block = self._parent_block()
Y
Yu Yang 已提交
1401
            out_true = parent_block.create_var(
Y
Yu Yang 已提交
1402
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1403
                dtype=x.dtype)
Y
Yu Yang 已提交
1404 1405

            out_false = parent_block.create_var(
Y
Yu Yang 已提交
1406
                name=unique_name.generate('ifelse_input' + self.helper.name),
F
fengjiayi 已提交
1407
                dtype=x.dtype)
Y
Yu Yang 已提交
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425
            parent_block.append_op(
                type='split_lod_tensor',
                inputs={
                    'X': x,
                    'Mask': self.cond,
                },
                outputs={'OutTrue': out_true,
                         'OutFalse': out_false},
                attrs={'level': 0})
            self.input_table[id(x)] = (out_true, out_false)
        else:
            out_true, out_false = self.input_table[id(x)]

        if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS:
            return out_true
        else:
            return out_false

1426
    def _parent_block(self):
Y
Yu Yang 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
        current_block = self.helper.main_program.current_block()
        return self.helper.main_program.block(current_block.parent_idx)

    def true_block(self):
        return IfElseBlockGuard(True, self)

    def false_block(self):
        return IfElseBlockGuard(False, self)

    def output(self, *outs):
        if self.status == self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("output can only be invoked in the sub-block")

        out_table = self.output_table[1 if self.status ==
                                      self.IN_IF_ELSE_TRUE_BLOCKS else 0]
1442
        parent_block = self._parent_block()
Y
Yu Yang 已提交
1443 1444 1445 1446 1447
        for each_out in outs:
            if not isinstance(each_out, Variable):
                raise TypeError("Each output should be a variable")
            # create outside tensor
            outside_out = parent_block.create_var(
Y
Yu Yang 已提交
1448 1449
                name=unique_name.generate("_".join(
                    [self.helper.name, 'output'])),
F
fengjiayi 已提交
1450
                dtype=each_out.dtype)
Y
Yu Yang 已提交
1451 1452 1453
            out_table.append(outside_out)

            # assign local var to outside
1454
            assign(input=each_out, output=outside_out)
Y
Yu Yang 已提交
1455 1456 1457 1458

    def __call__(self):
        if self.status != self.OUT_IF_ELSE_BLOCKS:
            raise ValueError("IfElse::__call__ must be out of sub-block")
1459
        false_len, true_len = list(map(len, self.output_table))
Y
Yu Yang 已提交
1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477
        if false_len == 0 and true_len == 0:
            raise ValueError("Must invoke true_block/false_block before "
                             "__call__")
        elif false_len != true_len and false_len != 0 and true_len != 0:
            raise ValueError("The output side must be same")
        elif false_len == 0 or true_len == 0:
            return self.output_table[0 if false_len != 0 else 1]

        # else none of false_len/true_len is zero
        # merge together
        rlist = []
        for false_var, true_var in zip(*self.output_table):
            rlist.append(
                merge_lod_tensor(
                    in_true=true_var,
                    in_false=false_var,
                    mask=self.cond,
                    x=self.cond,
1478
                    level=0))
Y
Yu Yang 已提交
1479
        return rlist
1480 1481 1482


class DynamicRNN(object):
Y
yuyang18 已提交
1483
    """
Y
yuyang18 已提交
1484 1485 1486
    The dynamic RNN can process a batch of sequence data. The length of each
    sample sequence can be different. This API automatically process them in
    batch.
Y
yuyang18 已提交
1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513

    The input lod must be set. Please reference `lod_tensor`

    >>> import paddle.fluid as fluid
    >>> data = fluid.layers.data(name='sentence', dtype='int64', lod_level=1)
    >>> embedding = fluid.layers.embedding(input=data, size=[65535, 32],
    >>>                                    is_sparse=True)
    >>>
    >>> drnn = fluid.layers.DynamicRNN()
    >>> with drnn.block():
    >>>     word = drnn.step_input(embedding)
    >>>     prev = drnn.memory(shape=[200])
    >>>     hidden = fluid.layers.fc(input=[word, prev], size=200, act='relu')
    >>>     drnn.update_memory(prev, hidden)  # set prev to hidden
    >>>     drnn.output(hidden)
    >>>
    >>> # last is the last time step of rnn. It is the encoding result.
    >>> last = fluid.layers.sequence_last_step(drnn())

    The dynamic RNN will unfold sequence into timesteps. Users need to define
    how to process each time step during the :code:`with` block.

    The `memory` is used staging data cross time step. The initial value of
    memory can be zero or another variable.

    The dynamic RNN can mark multiple variables as its output. Use `drnn()` to
    get the output sequence.
C
chengduoZH 已提交
1514 1515 1516 1517
    
    NOTES:
        Currently it is not supported that setting is_sparse to True of any 
        layers within DynamicRNN.
Y
yuyang18 已提交
1518
    """
1519 1520 1521 1522
    BEFORE_RNN = 0
    IN_RNN = 1
    AFTER_RNN = 2

1523 1524
    def __init__(self, name=None):
        self.helper = LayerHelper('dynamic_rnn', name=name)
1525 1526 1527 1528
        self.status = DynamicRNN.BEFORE_RNN
        self.lod_rank_table = None
        self.max_seq_len = None
        self.step_idx = None
1529
        self.zero_idx = None
1530 1531 1532
        self.mem_dict = dict()
        self.output_array = []
        self.outputs = []
X
Xin Pan 已提交
1533
        self.cond = self.helper.create_variable_for_type_inference(dtype='bool')
1534 1535 1536 1537 1538
        self.cond.stop_gradient = False
        self.while_op = While(self.cond)
        self.input_array = []
        self.mem_link = []

1539
    def step_input(self, x, level=0):
Y
yuyang18 已提交
1540 1541
        """
        Mark a sequence as a dynamic RNN input.
H
haowang101779990 已提交
1542

Y
yuyang18 已提交
1543 1544
        Args:
            x(Variable): The input sequence.
1545
            level(int): The level of lod used to split steps. Default: 0.
Y
yuyang18 已提交
1546 1547 1548 1549

        Returns:
            The current timestep in the input sequence.
        """
1550 1551 1552
        self._assert_in_rnn_block_("step_input")
        if not isinstance(x, Variable):
            raise TypeError(
1553
                "step_input() can only take a Variable as its input.")
1554 1555 1556
        parent_block = self._parent_block_()
        if self.lod_rank_table is None:
            self.lod_rank_table = parent_block.create_var(
Y
Yu Yang 已提交
1557
                name=unique_name.generate('lod_rank_table'),
1558 1559 1560 1561 1562
                type=core.VarDesc.VarType.LOD_RANK_TABLE)
            self.lod_rank_table.stop_gradient = True
            parent_block.append_op(
                type='lod_rank_table',
                inputs={"X": x},
1563 1564
                outputs={"Out": self.lod_rank_table},
                attrs={"level": level})
1565
            self.max_seq_len = parent_block.create_var(
Y
Yu Yang 已提交
1566 1567
                name=unique_name.generate('dynamic_rnn_max_seq_len'),
                dtype='int64')
1568 1569 1570 1571 1572 1573 1574 1575 1576 1577
            self.max_seq_len.stop_gradient = False
            parent_block.append_op(
                type='max_sequence_len',
                inputs={'RankTable': self.lod_rank_table},
                outputs={"Out": self.max_seq_len})
            self.cond.stop_gradient = True
            parent_block.append_op(
                type='less_than',
                inputs={'X': self.step_idx,
                        'Y': self.max_seq_len},
J
JiayiFeng 已提交
1578 1579
                outputs={'Out': self.cond},
                attrs={'force_cpu': True})
1580 1581

        input_array = parent_block.create_var(
Y
Yu Yang 已提交
1582
            name=unique_name.generate('dynamic_rnn_input_array'),
1583 1584 1585 1586 1587 1588 1589 1590
            type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
            dtype=x.dtype)
        self.input_array.append((input_array, x.dtype))
        parent_block.append_op(
            type='lod_tensor_to_array',
            inputs={'X': x,
                    'RankTable': self.lod_rank_table},
            outputs={'Out': input_array})
1591
        return array_read(array=input_array, i=self.step_idx)
1592

Y
yangyaming 已提交
1593
    def static_input(self, x):
Y
yuyang18 已提交
1594 1595 1596
        """
        Mark a variable as a RNN input. The input will not be scattered into
        time steps.
H
haowang101779990 已提交
1597

Y
yuyang18 已提交
1598 1599 1600 1601 1602 1603
        Args:
            x(Variable): The input variable.

        Returns:
            The input variable that can access in RNN.
        """
Y
yangyaming 已提交
1604 1605 1606 1607 1608 1609 1610 1611 1612
        self._assert_in_rnn_block_("static_input")
        if not isinstance(x, Variable):
            raise TypeError(
                "static_input() can only take a Variable as its input")
        if self.lod_rank_table is None:
            raise RuntimeError(
                "static_input() must be called after step_input().")
        parent_block = self._parent_block_()
        x_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1613
            name=unique_name.generate("dynamic_rnn_static_input_reordered"),
Y
yangyaming 已提交
1614 1615 1616 1617 1618 1619 1620 1621 1622
            type=core.VarDesc.VarType.LOD_TENSOR,
            dtype=x.dtype)
        parent_block.append_op(
            type='reorder_lod_tensor_by_rank',
            inputs={'X': [x],
                    'RankTable': [self.lod_rank_table]},
            outputs={'Out': [x_reordered]})
        return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)

S
rename  
sneaxiy 已提交
1623
    @signature_safe_contextmanager
1624
    def block(self):
Y
yuyang18 已提交
1625
        """
1626
        The block for user to define operators in RNN.
Y
yuyang18 已提交
1627
        """
1628 1629
        if self.status != DynamicRNN.BEFORE_RNN:
            raise ValueError("rnn.block() can only be invoke once")
1630 1631
        self.step_idx = fill_constant(
            shape=[1], dtype='int64', value=0, force_cpu=True)
1632 1633 1634 1635
        self.step_idx.stop_gradient = False
        self.status = DynamicRNN.IN_RNN
        with self.while_op.block():
            yield
1636
            increment(x=self.step_idx, value=1.0, in_place=True)
1637 1638

            for new_mem, mem_array in self.mem_link:
1639 1640
                array_write(x=new_mem, i=self.step_idx, array=mem_array)

J
JiayiFeng 已提交
1641 1642 1643 1644 1645
            less_than(
                x=self.step_idx,
                y=self.max_seq_len,
                force_cpu=True,
                cond=self.cond)
1646 1647 1648 1649 1650

        self.status = DynamicRNN.AFTER_RNN
        for each_array in self.output_array:
            self.outputs.append(
                array_to_lod_tensor(
1651
                    x=each_array, table=self.lod_rank_table))
1652 1653

    def __call__(self, *args, **kwargs):
Y
yuyang18 已提交
1654 1655 1656
        """
        Get the output of RNN. This API should only be invoked after RNN.block()
        """
1657
        if self.status != DynamicRNN.AFTER_RNN:
1658 1659
            raise ValueError(("Output of the dynamic RNN can only be visited "
                              "outside the rnn block."))
1660 1661 1662 1663 1664
        if len(self.outputs) == 1:
            return self.outputs[0]
        else:
            return self.outputs

1665 1666 1667 1668 1669 1670
    def memory(self,
               init=None,
               shape=None,
               value=0.0,
               need_reorder=False,
               dtype='float32'):
Y
yuyang18 已提交
1671
        """
Y
yuyang18 已提交
1672
        Create a memory variable for dynamic rnn.
Y
yuyang18 已提交
1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720

        If the :code:`init` is not None, :code:`memory` will be initialized by
        this variable. The :code:`need_reorder` is used to reorder the memory as
        the input variable. It should be set to true when the initialized memory
        depends on the input sample.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>> boot_memory = fluid.layers.data(
        >>>                 name='boot', dtype='float32', shape=[10])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(init=boot_memory, need_reorder=True)
        >>>     hidden = fluid.layers.fc(
        >>>                 input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Otherwise, if :code:`shape`, :code:`value`, :code:`dtype` are set, the
        :code:`memory` will be initialized by this :code:`value`.

        For example,

        >>> import paddle.fluid as fluid
        >>> sentence = fluid.layers.data(
        >>>                 name='sentence', dtype='float32', shape=[32])
        >>>
        >>> drnn = fluid.layers.DynamicRNN()
        >>> with drnn.block():
        >>>     word = drnn.step_input(sentence)
        >>>     memory = drnn.memory(shape=[10], dtype='float32', value=0)
        >>>     hidden = fluid.layers.fc(
        >>>             input=[word, memory], size=10, act='tanh')
        >>>     drnn.update_memory(ex_mem=memory, new_mem=hidden)
        >>>     drnn.output(hidden)
        >>> rnn_output = drnn()


        Args:
            init(Variable|None): The initialized variable.

H
haowang101779990 已提交
1721
            shape(list|tuple): The memory shape. NOTE the shape does not contain batch_size.
Y
yuyang18 已提交
1722 1723 1724

            value(float): the initalized value.

H
haowang101779990 已提交
1725
            need_reorder(bool): True if the initialized memory depends on the input sample.
Y
yuyang18 已提交
1726 1727 1728 1729

            dtype(str|numpy.dtype): The data type of the initialized memory.

        Returns:
1730
            The memory variable.
Y
yuyang18 已提交
1731
        """
1732
        self._assert_in_rnn_block_('memory')
1733
        self._init_zero_idx_()
1734 1735 1736 1737 1738
        if init is not None:
            if not isinstance(init, Variable):
                raise TypeError(
                    "The input arg `init` of memory() must be a Variable")
            parent_block = self._parent_block_()
1739 1740 1741 1742 1743 1744 1745 1746
            init_tensor = init
            if need_reorder == True:
                if self.lod_rank_table is None:
                    raise ValueError(
                        'If set need_reorder to True, make sure step_input be '
                        'invoked before '
                        'memory(init=init, need_reordered=True, ...).')
                init_reordered = parent_block.create_var(
Y
Yu Yang 已提交
1747
                    name=unique_name.generate('dynamic_rnn_mem_init_reordered'),
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    dtype=init.dtype)
                parent_block.append_op(
                    type='reorder_lod_tensor_by_rank',
                    inputs={
                        'X': [init_tensor],
                        'RankTable': [self.lod_rank_table]
                    },
                    outputs={'Out': [init_reordered]})
                init_tensor = init_reordered
1758
            mem_array = parent_block.create_var(
Y
Yu Yang 已提交
1759
                name=unique_name.generate('dynamic_rnn_mem_array'),
1760 1761 1762 1763
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=init.dtype)
            parent_block.append_op(
                type='write_to_array',
1764
                inputs={'X': init_tensor,
1765 1766
                        'I': self.zero_idx},
                outputs={'Out': mem_array})
1767
            retv = array_read(array=mem_array, i=self.step_idx)
1768
            retv = shrink_memory(
1769
                x=retv, i=self.step_idx, table=self.lod_rank_table)
1770 1771 1772 1773 1774 1775 1776 1777 1778
            self.mem_dict[retv.name] = mem_array
            return retv
        else:
            if len(self.input_array) == 0:
                raise ValueError(
                    "step_input should be invoked before memory(shape=..., value=...)"
                )
            parent_block = self._parent_block_()
            init = parent_block.create_var(
Y
Yu Yang 已提交
1779
                name=unique_name.generate('mem_init'), dtype=dtype)
1780
            arr, dtype = self.input_array[0]
Y
Yu Yang 已提交
1781 1782
            in0 = parent_block.create_var(
                name=unique_name.generate('in0'), dtype=dtype)
1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799
            parent_block.append_op(
                type='read_from_array',
                inputs={'X': [arr],
                        'I': [self.zero_idx]},
                outputs={'Out': [in0]})
            parent_block.append_op(
                type='fill_constant_batch_size_like',
                inputs={'Input': [in0]},
                outputs={'Out': [init]},
                attrs={
                    'shape': [-1] + shape,
                    'value': float(value),
                    'dtype': init.dtype
                })
            return self.memory(init=init)

    def update_memory(self, ex_mem, new_mem):
Y
yuyang18 已提交
1800 1801 1802
        """
        Update the memory from ex_mem to new_mem. NOTE that the shape and data
        type of :code:`ex_mem` and :code:`new_mem` must be same.
H
haowang101779990 已提交
1803
        
Y
yuyang18 已提交
1804 1805 1806 1807 1808 1809 1810
        Args:
            ex_mem(Variable): the memory variable.
            new_mem(Variable): the plain variable generated in RNN block.

        Returns:
            None
        """
1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827
        self._assert_in_rnn_block_('update_memory')
        if not isinstance(ex_mem, Variable):
            raise TypeError("The input arg `ex_mem` of update_memory() must "
                            "be a Variable")
        if not isinstance(new_mem, Variable):
            raise TypeError("The input arg `new_mem` of update_memory() must "
                            "be a Variable")

        mem_array = self.mem_dict.get(ex_mem.name, None)
        if mem_array is None:
            raise ValueError("Please invoke memory before update_memory")
        if self.lod_rank_table is None:
            raise ValueError("Please invoke step_input before update_memory")

        self.mem_link.append((new_mem, mem_array))

    def output(self, *outputs):
Y
yuyang18 已提交
1828
        """
1829
        Mark the RNN output variables.
Y
yuyang18 已提交
1830 1831 1832 1833 1834 1835 1836

        Args:
            outputs: The output variables.

        Returns:
            None
        """
1837 1838 1839 1840
        self._assert_in_rnn_block_('output')
        parent_block = self._parent_block_()
        for each in outputs:
            outside_array = parent_block.create_var(
Y
Yu Yang 已提交
1841
                name=unique_name.generate("_".join(
1842 1843 1844 1845 1846 1847
                    [self.helper.name, "output_array", each.name])),
                type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
                dtype=each.dtype)
            array_write(x=each, i=self.step_idx, array=outside_array)
            self.output_array.append(outside_array)

1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863
    def _init_zero_idx_(self):
        if self.zero_idx is None:
            parent_block = self._parent_block_()
            self.zero_idx = parent_block.create_var(
                name=unique_name.generate('zero_idx'), dtype='int64')
            parent_block.append_op(
                type='fill_constant',
                inputs={},
                outputs={'Out': [self.zero_idx]},
                attrs={
                    'shape': [1],
                    'dtype': self.zero_idx.dtype,
                    'value': float(0),
                    'force_cpu': True
                })

1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
    def _parent_block_(self):
        prog = self.helper.main_program
        parent_idx = prog.current_block().parent_idx
        assert parent_idx >= 0
        parent_block = prog.block(parent_idx)

        return parent_block

    def _assert_in_rnn_block_(self, method):
        if self.status != DynamicRNN.IN_RNN:
            raise ValueError("{0} can only be invoked inside rnn block.".format(
                method))
Y
Yang Yu 已提交
1876 1877


1878
@autodoc()
Y
Yang Yu 已提交
1879 1880 1881 1882 1883
def reorder_lod_tensor_by_rank(x, rank_table):
    helper = LayerHelper('reorder_lod_tensor_by_rank', **locals())
    helper.is_instance('x', Variable)
    helper.is_instance('rank_table', Variable)

X
Xin Pan 已提交
1884
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
Y
Yang Yu 已提交
1885 1886 1887 1888 1889 1890
    helper.append_op(
        type='reorder_lod_tensor_by_rank',
        inputs={'X': [x],
                'RankTable': [rank_table]},
        outputs={'Out': [out]})
    return out
1891 1892


1893
def is_empty(x, cond=None):
1894
    """
F
fengjiayi 已提交
1895
    Test whether a Variable is empty.
1896 1897

    Args:
F
fengjiayi 已提交
1898
        x (Variable): The Variable to be tested.
1899
        cond (Variable|None): Output parameter. Returns the test result
F
fengjiayi 已提交
1900
                              of given 'x'. Default: None
1901 1902

    Returns:
F
fengjiayi 已提交
1903
        Variable: A bool scalar. True if 'x' is an empty Variable.
1904 1905 1906

    Raises:
        TypeError: If input cond is not a variable, or cond's dtype is
F
fengjiayi 已提交
1907
                   not bool.
1908 1909 1910 1911

    Examples:
        .. code-block:: python

F
fengjiayi 已提交
1912 1913 1914
          res = fluid.layers.is_empty(x=input)
          # or:
          fluid.layers.is_empty(x=input, cond=res)
1915 1916 1917
    """
    helper = LayerHelper("is_empty", **locals())
    if cond is None:
X
Xin Pan 已提交
1918
        cond = helper.create_variable_for_type_inference(dtype='bool')
1919 1920 1921 1922 1923 1924 1925 1926 1927
        cond.stop_gradient = True
    elif not isinstance(cond, Variable):
        raise TypeError("cond takes a variable")
    elif cond.dtype != 'bool':
        raise TypeError("The data type of cond must be bool")

    helper.append_op(
        type='is_empty', inputs={'X': [x]}, outputs={'Out': [cond]})
    return cond