PrepareMOTDataSet.md 12.0 KB
Newer Older
G
George Ni 已提交
1 2 3 4 5 6 7 8 9 10 11 12
English | [简体中文](PrepareMOTDataSet_cn.md)

# Contents
## Multi-Object Tracking Dataset Preparation
- [MOT Dataset](#MOT_Dataset)
- [Data Format](#Data_Format)
- [Dataset Directory](#Dataset_Directory)
- [Download Links](#Download_Links)
- [Custom Dataset Preparation](#Custom_Dataset_Preparation)
- [Citations](#Citations)

### MOT Dataset
13
PaddleDetection uses the same training data as [JDE](https://github.com/Zhongdao/Towards-Realtime-MOT) and [FairMOT](https://github.com/ifzhang/FairMOT). Please download and prepare all the training data including **Caltech Pedestrian, CityPersons, CUHK-SYSU, PRW, ETHZ, MOT17 and MOT16**. **MOT15 and MOT20** can also be downloaded from the official webpage of MOT challenge. If you want to use these datasets, please **follow their licenses**.
G
George Ni 已提交
14 15 16

### Data Format
These several relevant datasets have the following structure:
G
George Ni 已提交
17 18 19 20 21 22 23 24 25 26
```
Caltech
   |——————images
   |        └——————00001.jpg
   |        |—————— ...
   |        └——————0000N.jpg
   └——————labels_with_ids
            └——————00001.txt
            |—————— ...
            └——————0000N.txt
G
George Ni 已提交
27 28 29 30 31 32
MOT17
   |——————images
   |        └——————train
   |        └——————test
   └——————labels_with_ids
            └——————train
G
George Ni 已提交
33
```
G
George Ni 已提交
34
Annotations of these datasets are provided in a unified format. Every image has a corresponding annotation text. Given an image path, the annotation text path can be generated by replacing the string `images` with `labels_with_ids` and replacing `.jpg` with `.txt`.
G
George Ni 已提交
35 36 37 38 39

In the annotation text, each line is describing a bounding box and has the following format:
```
[class] [identity] [x_center] [y_center] [width] [height]
```
40 41 42 43
**Notes:**
- `class` should be `0`. Only single-class multi-object tracking is supported now.
- `identity` is an integer from `0` to `num_identities - 1`(`num_identities` is the total number of instances of objects in the dataset), or `-1` if this box has no identity annotation.
- `[x_center] [y_center] [width] [height]` are the center coordinates, width and height, note that they are normalized by the width/height of the image, so they are floating point numbers ranging from 0 to 1.
G
George Ni 已提交
44 45


G
George Ni 已提交
46 47 48 49 50 51 52
### Dataset Directory

First, follow the command below to download the `image_list.zip` and unzip it in the `dataset/mot` directory:
```
wget https://dataset.bj.bcebos.com/mot/image_lists.zip
```
Then download and unzip each dataset, and the final directory is as follows:
G
George Ni 已提交
53 54 55 56
```
dataset/mot
  |——————image_lists
            |——————caltech.10k.val  
G
George Ni 已提交
57
            |——————caltech.all  
G
George Ni 已提交
58 59 60 61 62 63 64
            |——————caltech.train  
            |——————caltech.val  
            |——————citypersons.train  
            |——————citypersons.val  
            |——————cuhksysu.train  
            |——————cuhksysu.val  
            |——————eth.train  
G
George Ni 已提交
65
            |——————mot15.train  
G
George Ni 已提交
66 67
            |——————mot16.train  
            |——————mot17.train  
G
George Ni 已提交
68
            |——————mot20.train  
G
George Ni 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81
            |——————prw.train  
            |——————prw.val
  |——————Caltech
  |——————Cityscapes
  |——————CUHKSYSU
  |——————ETHZ
  |——————MOT15
  |——————MOT16
  |——————MOT17
  |——————MOT20
  |——————PRW
```

G
George Ni 已提交
82
### Custom Dataset Preparation
G
George Ni 已提交
83

84
In order to standardize training and evaluation, custom data needs to be converted into the same directory and format as MOT-16 dataset:
G
George Ni 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
```
custom_data
   |——————images
   |        └——————test
   |        └——————train
   |                └——————seq1
   |                |        └——————gt
   |                |        |       └——————gt.txt
   |                |        └——————img1
   |                |        |       └——————000001.jpg
   |                |        |       |——————000002.jpg
   |                |        |       └—————— ...
   |                |        └——————seqinfo.ini
   |                └——————seq2
   |                └——————...
   └——————labels_with_ids
            └——————train
                    └——————seq1
                    |        └——————000001.txt
                    |        |——————000002.txt
                    |        └—————— ...
                    └——————seq2
                    └—————— ...
```

#### images
- `gt.txt` is the original annotation file of all images extracted from the video.
- `img1` is the folder of images extracted from the video by a certain frame rate.
- `seqinfo.ini` is a video information description file, and the following format is required:
```
[Sequence]
name=MOT16-02
imDir=img1
frameRate=30
seqLength=600
imWidth=1920
imHeight=1080
imExt=.jpg
```

Each line in `gt.txt`  describes a bounding box, with the format as follows:
```
127
[frame_id],[identity],[bb_left],[bb_top],[width],[height],[x],[y],[z]
G
George Ni 已提交
128 129 130 131 132 133
```
**Notes:**:
- `frame_id` is the current frame id.
- `identity` is an integer from `0` to `num_identities - 1`(`num_identities` is the total number of instances of objects in the dataset), or `-1` if this box has no identity annotation.
- `bb_left` is the x coordinate of the left boundary of the target box
- `bb_top` is the Y coordinate of the upper boundary of the target box
134 135
- `width, height` are the pixel width and height
- `x,y,z` are only used in 3D, default to `-1` in 2D.
G
George Ni 已提交
136 137 138 139 140 141 142 143 144 145 146 147


#### labels_with_ids
Annotations of these datasets are provided in a unified format. Every image has a corresponding annotation text. Given an image path, the annotation text path can be generated by replacing the string `images` with `labels_with_ids` and replacing `.jpg` with `.txt`.

In the annotation text, each line is describing a bounding box and has the following format:
```
[class] [identity] [x_center] [y_center] [width] [height]
```
**Notes:**
- `class` should be `0`. Only single-class multi-object tracking is supported now.
- `identity` is an integer from `0` to `num_identities - 1`(`num_identities` is the total number of instances of objects in the dataset), or `-1` if this box has no identity annotation.
148
- `[x_center] [y_center] [width] [height]` are the center coordinates, width and height, note that they are normalized by the width/height of the image, so they are floating point numbers ranging from 0 to 1.
G
George Ni 已提交
149 150 151 152 153 154 155 156 157 158 159

Generate the corresponding `labels_with_ids` with following command:
```
cd dataset/mot
python gen_labels_MOT.py
```


### Download Links

#### Caltech Pedestrian
G
George Ni 已提交
160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1sYBXXvQaXZ8TuNwQxMcAgg)
[[1]](https://pan.baidu.com/s/1lVO7YBzagex1xlzqPksaPw)
[[2]](https://pan.baidu.com/s/1PZXxxy_lrswaqTVg0GuHWg)
[[3]](https://pan.baidu.com/s/1M93NCo_E6naeYPpykmaNgA)
[[4]](https://pan.baidu.com/s/1ZXCdPNXfwbxQ4xCbVu5Dtw)
[[5]](https://pan.baidu.com/s/1kcZkh1tcEiBEJqnDtYuejg)
[[6]](https://pan.baidu.com/s/1sDjhtgdFrzR60KKxSjNb2A)
[[7]](https://pan.baidu.com/s/18Zvp_d33qj1pmutFDUbJyw)

Google Drive: [[annotations]](https://drive.google.com/file/d/1h8vxl_6tgi9QVYoer9XcY9YwNB32TE5k/view?usp=sharing) ,
please download all the images `.tar` files from [this page](http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/datasets/USA/) and unzip the images under `Caltech/images`

You may need [this tool](https://github.com/mitmul/caltech-pedestrian-dataset-converter) to convert the original data format to jpeg images.
Original dataset webpage: [CaltechPedestrians](http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/)
G
George Ni 已提交
175 176

#### CityPersons
G
George Ni 已提交
177 178 179 180 181 182 183 184 185 186 187 188
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1g24doGOdkKqmbgbJf03vsw)
[[1]](https://pan.baidu.com/s/1mqDF9M5MdD3MGxSfe0ENsA)
[[2]](https://pan.baidu.com/s/1Qrbh9lQUaEORCIlfI25wdA)
[[3]](https://pan.baidu.com/s/1lw7shaffBgARDuk8mkkHhw)

Google Drive:
[[0]](https://drive.google.com/file/d/1DgLHqEkQUOj63mCrS_0UGFEM9BG8sIZs/view?usp=sharing)
[[1]](https://drive.google.com/file/d/1BH9Xz59UImIGUdYwUR-cnP1g7Ton_LcZ/view?usp=sharing)
[[2]](https://drive.google.com/file/d/1q_OltirP68YFvRWgYkBHLEFSUayjkKYE/view?usp=sharing)
[[3]](https://drive.google.com/file/d/1VSL0SFoQxPXnIdBamOZJzHrHJ1N2gsTW/view?usp=sharing)

G
George Ni 已提交
189
Original dataset webpage: [Citypersons pedestrian detection dataset](https://github.com/cvgroup-njust/CityPersons)
G
George Ni 已提交
190

G
George Ni 已提交
191
#### CUHK-SYSU
G
George Ni 已提交
192 193 194 195 196 197 198 199
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1YFrlyB1WjcQmFW3Vt_sEaQ)

Google Drive:
[[0]](https://drive.google.com/file/d/1D7VL43kIV9uJrdSCYl53j89RE2K-IoQA/view?usp=sharing)

Original dataset webpage: [CUHK-SYSU Person Search Dataset](http://www.ee.cuhk.edu.hk/~xgwang/PS/dataset.html)

G
George Ni 已提交
200
#### PRW
G
George Ni 已提交
201 202 203 204 205 206 207
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1iqOVKO57dL53OI1KOmWeGQ)

Google Drive:
[[0]](https://drive.google.com/file/d/116_mIdjgB-WJXGe8RYJDWxlFnc_4sqS8/view?usp=sharing)


G
George Ni 已提交
208
#### ETHZ (overlapping videos with MOT-16 removed):
G
George Ni 已提交
209 210 211 212 213 214 215 216
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/14EauGb2nLrcB3GRSlQ4K9Q)

Google Drive:
[[0]](https://drive.google.com/file/d/19QyGOCqn8K_rc9TXJ8UwLSxCx17e0GoY/view?usp=sharing)

Original dataset webpage: [ETHZ pedestrian datset](https://data.vision.ee.ethz.ch/cvl/aess/dataset/)

G
George Ni 已提交
217
#### MOT-17
G
George Ni 已提交
218 219 220 221 222 223 224 225
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/1lHa6UagcosRBz-_Y308GvQ)

Google Drive:
[[0]](https://drive.google.com/file/d/1ET-6w12yHNo8DKevOVgK1dBlYs739e_3/view?usp=sharing)

Original dataset webpage: [MOT-17](https://motchallenge.net/data/MOT17/)

G
George Ni 已提交
226
#### MOT-16
G
George Ni 已提交
227 228 229 230 231 232 233 234
Baidu NetDisk:
[[0]](https://pan.baidu.com/s/10pUuB32Hro-h-KUZv8duiw)

Google Drive:
[[0]](https://drive.google.com/file/d/1254q3ruzBzgn4LUejDVsCtT05SIEieQg/view?usp=sharing)

Original dataset webpage: [MOT-16](https://motchallenge.net/data/MOT16/)

G
George Ni 已提交
235 236 237 238 239 240 241 242 243
#### MOT-15
Original dataset webpage: [MOT-15](https://motchallenge.net/data/MOT15/)

#### MOT-20
Original dataset webpage: [MOT-20](https://motchallenge.net/data/MOT20/)




G
George Ni 已提交
244

G
George Ni 已提交
245
### Citation
G
George Ni 已提交
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312
Caltech:
```
@inproceedings{ dollarCVPR09peds,
       author = "P. Doll\'ar and C. Wojek and B. Schiele and  P. Perona",
       title = "Pedestrian Detection: A Benchmark",
       booktitle = "CVPR",
       month = "June",
       year = "2009",
       city = "Miami",
}
```
Citypersons:
```
@INPROCEEDINGS{Shanshan2017CVPR,
  Author = {Shanshan Zhang and Rodrigo Benenson and Bernt Schiele},
  Title = {CityPersons: A Diverse Dataset for Pedestrian Detection},
  Booktitle = {CVPR},
  Year = {2017}
 }

@INPROCEEDINGS{Cordts2016Cityscapes,
title={The Cityscapes Dataset for Semantic Urban Scene Understanding},
author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt},
booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year={2016}
}
```
CUHK-SYSU:
```
@inproceedings{xiaoli2017joint,
  title={Joint Detection and Identification Feature Learning for Person Search},
  author={Xiao, Tong and Li, Shuang and Wang, Bochao and Lin, Liang and Wang, Xiaogang},
  booktitle={CVPR},
  year={2017}
}
```
PRW:
```
@inproceedings{zheng2017person,
  title={Person re-identification in the wild},
  author={Zheng, Liang and Zhang, Hengheng and Sun, Shaoyan and Chandraker, Manmohan and Yang, Yi and Tian, Qi},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={1367--1376},
  year={2017}
}
```
ETHZ:
```
@InProceedings{eth_biwi_00534,
author = {A. Ess and B. Leibe and K. Schindler and and L. van Gool},
title = {A Mobile Vision System for Robust Multi-Person Tracking},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR'08)},
year = {2008},
month = {June},
publisher = {IEEE Press},
keywords = {}
}
```
MOT-16&17:
```
@article{milan2016mot16,
  title={MOT16: A benchmark for multi-object tracking},
  author={Milan, Anton and Leal-Taix{\'e}, Laura and Reid, Ian and Roth, Stefan and Schindler, Konrad},
  journal={arXiv preprint arXiv:1603.00831},
  year={2016}
}
```