action.md 5.9 KB
Newer Older
J
JYChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# PP-Human行为识别模块

行为识别在智慧社区,安防监控等方向具有广泛应用,PP-Human中集成了基于骨骼点的行为识别模块。

<div align="center">
  <img src="./images/action.gif" width='1000'/>
  <center>数据来源及版权归属:天覆科技,感谢提供并开源实际场景数据,仅限学术研究使用</center>
</div>

## 模型库
在这里,我们提供了检测/跟踪、关键点识别以及识别摔倒动作的预训练模型,用户可以直接下载使用。

| 任务 | 算法 | 精度 | 预测速度(ms) | 下载链接 |
|:---------------------|:---------:|:------:|:------:| :---------------------------------------------------------------------------------: |
| 行人检测/跟踪 |  PP-YOLOE | mAP: 56.3 <br> MOTA: 72.0 | 检测: 28ms <br> 跟踪:33.1ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |
| 关键点识别 | HRNet | AP: 87.1 | 单人 2.9ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip)|
| 行为识别 |  ST-GCN  | 准确率: 96.43 | 单人 2.7ms | [下载链接](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) |


注:
J
JYChen 已提交
21 22 23
1. 检测/跟踪模型精度为[MOT17](https://motchallenge.net/)[CrowdHuman](http://www.crowdhuman.org/)[HIEVE](http://humaninevents.org/)和部分业务数据融合训练测试得到。
2. 关键点模型使用[COCO](https://cocodataset.org/)[UAV-Human](https://github.com/SUTDCV/UAV-Human)和部分业务数据融合训练, 精度在业务数据测试集上得到。
3. 行为识别模型使用[NTU-RGB+D](https://rose1.ntu.edu.sg/dataset/actionRecognition/)[UR Fall Detection Dataset](http://fenix.univ.rzeszow.pl/~mkepski/ds/uf.html)和部分业务数据融合训练,精度在业务数据测试集上得到。
24
4. 预测速度为NVIDIA T4 机器上使用TensorRT FP16时的速度, 速度包含数据预处理、模型预测、后处理全流程。
J
JYChen 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58

## 配置说明
[配置文件](../config/infer_cfg.yml)中与行为识别相关的参数如下:
```
ACTION:
  model_dir: output_inference/STGCN  # 模型所在路径
  batch_size: 1 # 预测批大小。 当前仅支持为1进行推理
  max_frames: 50 # 动作片段对应的帧数。在行人ID对应时序骨骼点结果时达到该帧数后,会通过行为识别模型判断该段序列的动作类型。与训练设置一致时效果最佳。
  display_frames: 80 # 显示帧数。当预测结果为摔倒时,在对应人物ID中显示状态的持续时间。
  coord_size: [384, 512] # 坐标统一缩放到的尺度大小。与训练设置一致时效果最佳。
```

## 使用方法
1. 从上表链接中下载模型并解压到```./output_inference```路径下。
2. 目前行为识别模块仅支持视频输入,启动命令如下:
```python
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \
                                                   --video_file=test_video.mp4 \
                                                   --device=gpu \
                                                   --enable_action=True
```
3. 若修改模型路径,有以下两种方式:

    - ```./deploy/pphuman/config/infer_cfg.yml```下可以配置不同模型路径,关键点模型和行为识别模型分别对应`KPT`和`ACTION`字段,修改对应字段下的路径为实际期望的路径即可。
    - 命令行中增加`--model_dir`修改模型路径:
```python
python deploy/pphuman/pipeline.py --config deploy/pphuman/config/infer_cfg.yml \
                                                   --video_file=test_video.mp4 \
                                                   --device=gpu \
                                                   --enable_action=True \
                                                   --model_dir kpt=./dark_hrnet_w32_256x192 action=./STGCN
```

## 方案说明
59
1. 使用目标检测与多目标跟踪获取视频输入中的行人检测框及跟踪ID序号,模型方案为PP-YOLOE,详细文档参考[PP-YOLOE](../../../configs/ppyoloe/README_cn.md)
J
JYChen 已提交
60 61 62 63 64 65 66 67
2. 通过行人检测框的坐标在输入视频的对应帧中截取每个行人,并使用[关键点识别模型](../../../configs/keypoint/hrnet/dark_hrnet_w32_256x192.yml)得到对应的17个骨骼特征点。骨骼特征点的顺序及类型与COCO一致,详见[如何准备关键点数据集](../../../docs/tutorials/PrepareKeypointDataSet_cn.md)中的`COCO数据集`部分。
3. 每个跟踪ID对应的目标行人各自累计骨骼特征点结果,组成该人物的时序关键点序列。当累计到预定帧数或跟踪丢失后,使用行为识别模型判断时序关键点序列的动作类型。当前版本模型支持摔倒行为的识别,预测得到的`class id`对应关系为:
```
0: 摔倒,
1: 其他
```
4. 行为识别模型使用了[ST-GCN](https://arxiv.org/abs/1801.07455),并基于[PaddleVideo](https://github.com/PaddlePaddle/PaddleVideo/blob/develop/docs/zh-CN/model_zoo/recognition/stgcn.md)套件完成模型训练。

68 69 70 71 72 73 74 75
## 自定义模型训练
我们已经提供了检测/跟踪、关键点识别以及识别摔倒动作的预训练模型,可直接下载使用。如果希望使用自定义场景数据训练,或是对模型进行优化,根据具体模型,分别参考下面的链接:
| 任务 | 算法 | 模型训练及导出文档 |
| ---- | ---- | -------- |
| 行人检测/跟踪 | PP-YOLOE | [使用教程](../../../configs/ppyoloe/README_cn.md#使用教程) |
| 关键点识别 | HRNet | [使用教程](../../../configs/keypoint#3训练与测试) |
| 行为识别 |  ST-GCN  | [使用教程](https://github.com/PaddlePaddle/PaddleVideo/tree/develop/applications/PPHuman) |

J
JYChen 已提交
76 77 78 79 80 81 82 83 84
## 参考文献
```
@inproceedings{stgcn2018aaai,
  title     = {Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition},
  author    = {Sijie Yan and Yuanjun Xiong and Dahua Lin},
  booktitle = {AAAI},
  year      = {2018},
}
```