stm32f7xx_hal_rtc.c 61.7 KB
Newer Older
1 2 3 4 5
/**
  ******************************************************************************
  * @file    stm32f7xx_hal_rtc.c
  * @author  MCD Application Team
  * @brief   RTC HAL module driver.
6
  *          This file provides firmware functions to manage the following
7 8 9 10
  *          functionalities of the Real Time Clock (RTC) peripheral:
  *           + Initialization and de-initialization functions
  *           + RTC Time and Date functions
  *           + RTC Alarm functions
11
  *           + Peripheral Control functions
12
  *           + Peripheral State functions
13
  *
14 15 16 17
  @verbatim
  ==============================================================================
              ##### Backup Domain Operating Condition #####
  ==============================================================================
18 19
  [..] The real-time clock (RTC), the RTC backup registers, and the backup
       SRAM (BKP SRAM) can be powered from the VBAT voltage when the main
20
       VDD supply is powered off.
21 22
       To retain the content of the RTC backup registers, backup SRAM, and supply
       the RTC when VDD is turned off, VBAT pin can be connected to an optional
23 24 25 26 27 28 29 30
       standby voltage supplied by a battery or by another source.

  [..] To allow the RTC operating even when the main digital supply (VDD) is turned
       off, the VBAT pin powers the following blocks:
    (#) The RTC
    (#) The LSE oscillator
    (#) The backup SRAM when the low power backup regulator is enabled
    (#) PC13 to PC15 I/Os, plus PI8 I/O (when available)
31

32 33 34 35 36
  [..] When the backup domain is supplied by VDD (analog switch connected to VDD),
       the following pins are available:
    (#) PC14 and PC15 can be used as either GPIO or LSE pins
    (#) PC13 can be used as a GPIO or as the RTC_AF1 pin
    (#) PI8 can be used as a GPIO or as the RTC_AF2 pin
37 38

  [..] When the backup domain is supplied by VBAT (analog switch connected to VBAT
39 40
       because VDD is not present), the following pins are available:
    (#) PC14 and PC15 can be used as LSE pins only
41
    (#) PC13 can be used as the RTC_AF1 pin
42 43
    (#) PI8 can be used as the RTC_AF2 pin
    (#) PC1 can be used as the RTC_AF3 pin
44

45 46
                   ##### Backup Domain Reset #####
  ==================================================================
47
  [..] The backup domain reset sets all RTC registers and the RCC_BDCR register
48
       to their reset values. The BKPSRAM is not affected by this reset. The only
49
       way to reset the BKPSRAM is through the Flash interface by requesting
50 51
       a protection level change from 1 to 0.
  [..] A backup domain reset is generated when one of the following events occurs:
52 53 54
    (#) Software reset, triggered by setting the BDRST bit in the
        RCC Backup domain control register (RCC_BDCR).
    (#) VDD or VBAT power on, if both supplies have previously been powered off.
55 56 57

                   ##### Backup Domain Access #####
  ==================================================================
58 59 60
  [..] After reset, the backup domain (RTC registers, RTC backup data
       registers and backup SRAM) is protected against possible unwanted write
       accesses.
61 62 63 64 65 66
  [..] To enable access to the RTC Domain and RTC registers, proceed as follows:
    (+) Enable the Power Controller (PWR) APB1 interface clock using the
        __HAL_RCC_PWR_CLK_ENABLE() function.
    (+) Enable access to RTC domain using the HAL_PWR_EnableBkUpAccess() function.
    (+) Select the RTC clock source using the __HAL_RCC_RTC_CONFIG() function.
    (+) Enable RTC Clock using the __HAL_RCC_RTC_ENABLE() function.
67 68


69 70
                  ##### How to use this driver #####
  ==================================================================
71
  [..]
72
    (+) Enable the RTC domain access (see description in the section above).
73
    (+) Configure the RTC Prescaler (Asynchronous and Synchronous) and RTC hour
74
        format using the HAL_RTC_Init() function.
75

76 77
  *** Time and Date configuration ***
  ===================================
78 79
  [..]
    (+) To configure the RTC Calendar (Time and Date) use the HAL_RTC_SetTime()
80
        and HAL_RTC_SetDate() functions.
81 82
    (+) To read the RTC Calendar, use the HAL_RTC_GetTime() and HAL_RTC_GetDate() functions.

83 84 85
  *** Alarm configuration ***
  ===========================
  [..]
86
    (+) To configure the RTC Alarm use the HAL_RTC_SetAlarm() function.
87 88
        You can also configure the RTC Alarm with interrupt mode using the HAL_RTC_SetAlarm_IT() function.
    (+) To read the RTC Alarm, use the HAL_RTC_GetAlarm() function.
89

90 91
                  ##### RTC and low power modes #####
  ==================================================================
92
  [..] The MCU can be woken up from a low power mode by an RTC alternate
93
       function.
94 95 96
  [..] The RTC alternate functions are the RTC alarms (Alarm A and Alarm B),
       RTC wake-up, RTC tamper event detection and RTC time stamp event detection.
       These RTC alternate functions can wake up the system from the Stop and
97
       Standby low power modes.
98 99 100 101
  [..] The system can also wake up from low power modes without depending
       on an external interrupt (Auto-wake-up mode), by using the RTC alarm
       or the RTC wake-up events.
  [..] The RTC provides a programmable time base for waking up from the
102
       Stop or Standby mode at regular intervals.
103
       Wake-up from STOP and STANDBY modes is possible only when the RTC clock source
104
       is LSE or LSI.
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

  *** Callback registration ***
  =============================================

  The compilation define  USE_HAL_RTC_REGISTER_CALLBACKS when set to 1
  allows the user to configure dynamically the driver callbacks.
  Use Function @ref HAL_RTC_RegisterCallback() to register an interrupt callback.

  Function @ref HAL_RTC_RegisterCallback() allows to register following callbacks:
    (+) AlarmAEventCallback          : RTC Alarm A Event callback.
    (+) AlarmBEventCallback          : RTC Alarm B Event callback.
    (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
    (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
    (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
    (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
    (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
    (+) MspInitCallback              : RTC MspInit callback.
    (+) MspDeInitCallback            : RTC MspDeInit callback.
  This function takes as parameters the HAL peripheral handle, the Callback ID
  and a pointer to the user callback function.

  Use function @ref HAL_RTC_UnRegisterCallback() to reset a callback to the default
  weak function.
  @ref HAL_RTC_UnRegisterCallback() takes as parameters the HAL peripheral handle,
  and the Callback ID.
  This function allows to reset following callbacks:
    (+) AlarmAEventCallback          : RTC Alarm A Event callback.
    (+) AlarmBEventCallback          : RTC Alarm B Event callback.
    (+) TimeStampEventCallback       : RTC TimeStamp Event callback.
    (+) WakeUpTimerEventCallback     : RTC WakeUpTimer Event callback.
    (+) Tamper1EventCallback         : RTC Tamper 1 Event callback.
    (+) Tamper2EventCallback         : RTC Tamper 2 Event callback.
    (+) Tamper3EventCallback         : RTC Tamper 3 Event callback.
    (+) MspInitCallback              : RTC MspInit callback.
    (+) MspDeInitCallback            : RTC MspDeInit callback.

  By default, after the @ref HAL_RTC_Init() and when the state is HAL_RTC_STATE_RESET,
  all callbacks are set to the corresponding weak functions :
  examples @ref AlarmAEventCallback(), @ref WakeUpTimerEventCallback().
  Exception done for MspInit and MspDeInit callbacks that are reset to the legacy weak function
  in the @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit() only when these callbacks are null
  (not registered beforehand).
  If not, MspInit or MspDeInit are not null, @ref HAL_RTC_Init()/@ref HAL_RTC_DeInit()
  keep and use the user MspInit/MspDeInit callbacks (registered beforehand)

  Callbacks can be registered/unregistered in HAL_RTC_STATE_READY state only.
  Exception done MspInit/MspDeInit that can be registered/unregistered
  in HAL_RTC_STATE_READY or HAL_RTC_STATE_RESET state,
  thus registered (user) MspInit/DeInit callbacks can be used during the Init/DeInit.
  In that case first register the MspInit/MspDeInit user callbacks
  using @ref HAL_RTC_RegisterCallback() before calling @ref HAL_RTC_DeInit()
  or @ref HAL_RTC_Init() function.

  When The compilation define USE_HAL_RTC_REGISTER_CALLBACKS is set to 0 or
  not defined, the callback registration feature is not available and all callbacks
  are set to the corresponding weak functions.
161
   @endverbatim
162

163 164 165
  ******************************************************************************
  * @attention
  *
166 167
  * <h2><center>&copy; Copyright (c) 2017 STMicroelectronics.
  * All rights reserved.</center></h2>
168
  *
169 170 171 172
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
173 174
  *
  ******************************************************************************
175
  */
176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195

/* Includes ------------------------------------------------------------------*/
#include "stm32f7xx_hal.h"

/** @addtogroup STM32F7xx_HAL_Driver
  * @{
  */

/** @defgroup RTC RTC
  * @brief RTC HAL module driver
  * @{
  */

#ifdef HAL_RTC_MODULE_ENABLED

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
196
/* Exported functions --------------------------------------------------------*/
197 198 199 200

/** @defgroup RTC_Exported_Functions RTC Exported Functions
  * @{
  */
201 202 203

/** @defgroup RTC_Group1 Initialization and de-initialization functions
 *  @brief    Initialization and Configuration functions
204
 *
205
@verbatim
206 207 208
 ===============================================================================
              ##### Initialization and de-initialization functions #####
 ===============================================================================
209 210 211
   [..] This section provides functions allowing to initialize and configure the
         RTC Prescaler (Synchronous and Asynchronous), RTC Hour format, disable
         RTC registers Write protection, enter and exit the RTC initialization mode,
212
         RTC registers synchronization check and reference clock detection enable.
213
         (#) The RTC Prescaler is programmed to generate the RTC 1Hz time base.
214 215
             It is split into 2 programmable prescalers to minimize power consumption.
             (++) A 7-bit asynchronous prescaler and a 13-bit synchronous prescaler.
216
             (++) When both prescalers are used, it is recommended to configure the
217 218 219
                 asynchronous prescaler to a high value to minimize power consumption.
         (#) All RTC registers are Write protected. Writing to the RTC registers
             is enabled by writing a key into the Write Protection register, RTC_WPR.
220 221 222
         (#) To configure the RTC Calendar, user application should enter
             initialization mode. In this mode, the calendar counter is stopped
             and its value can be updated. When the initialization sequence is
223
             complete, the calendar restarts counting after 4 RTCCLK cycles.
224 225 226 227 228 229
         (#) To read the calendar through the shadow registers after Calendar
             initialization, calendar update or after wake-up from low power modes
             the software must first clear the RSF flag. The software must then
             wait until it is set again before reading the calendar, which means
             that the calendar registers have been correctly copied into the
             RTC_TR and RTC_DR shadow registers.The HAL_RTC_WaitForSynchro() function
230
             implements the above software sequence (RSF clear and RSF check).
231

232 233 234 235 236
@endverbatim
  * @{
  */

/**
237
  * @brief  Initializes the RTC peripheral
238 239 240 241 242 243 244 245 246 247 248
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_Init(RTC_HandleTypeDef *hrtc)
{
  /* Check the RTC peripheral state */
  if(hrtc == NULL)
  {
     return HAL_ERROR;
  }
249

250 251 252 253 254 255 256 257
  /* Check the parameters */
  assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));
  assert_param(IS_RTC_HOUR_FORMAT(hrtc->Init.HourFormat));
  assert_param(IS_RTC_ASYNCH_PREDIV(hrtc->Init.AsynchPrediv));
  assert_param(IS_RTC_SYNCH_PREDIV(hrtc->Init.SynchPrediv));
  assert_param (IS_RTC_OUTPUT(hrtc->Init.OutPut));
  assert_param (IS_RTC_OUTPUT_POL(hrtc->Init.OutPutPolarity));
  assert_param(IS_RTC_OUTPUT_TYPE(hrtc->Init.OutPutType));
258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
  if(hrtc->State == HAL_RTC_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hrtc->Lock = HAL_UNLOCKED;

    hrtc->AlarmAEventCallback          =  HAL_RTC_AlarmAEventCallback;        /* Legacy weak AlarmAEventCallback      */
    hrtc->AlarmBEventCallback          =  HAL_RTCEx_AlarmBEventCallback;      /* Legacy weak AlarmBEventCallback      */
    hrtc->TimeStampEventCallback       =  HAL_RTCEx_TimeStampEventCallback;   /* Legacy weak TimeStampEventCallback   */
    hrtc->WakeUpTimerEventCallback     =  HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
    hrtc->Tamper1EventCallback         =  HAL_RTCEx_Tamper1EventCallback;     /* Legacy weak Tamper1EventCallback     */
    hrtc->Tamper2EventCallback         =  HAL_RTCEx_Tamper2EventCallback;     /* Legacy weak Tamper2EventCallback     */
    hrtc->Tamper3EventCallback         =  HAL_RTCEx_Tamper3EventCallback;     /* Legacy weak Tamper3EventCallback     */

    if(hrtc->MspInitCallback == NULL)
    {
      hrtc->MspInitCallback = HAL_RTC_MspInit;
    }
    /* Init the low level hardware */
    hrtc->MspInitCallback(hrtc);

    if(hrtc->MspDeInitCallback == NULL)
    {
      hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
    }
  }
#else
286 287 288 289
  if(hrtc->State == HAL_RTC_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hrtc->Lock = HAL_UNLOCKED;
290

291 292 293
    /* Initialize RTC MSP */
    HAL_RTC_MspInit(hrtc);
  }
294 295 296 297 298
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */

  /* Set RTC state */
  hrtc->State = HAL_RTC_STATE_BUSY;

299 300 301 302 303 304 305
  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Set Initialization mode */
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
  {
    /* Enable the write protection for RTC registers */
306 307
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

308 309
    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_ERROR;
310

311
    return HAL_ERROR;
312
  }
313
  else
314
  {
315 316 317 318
    /* Clear RTC_CR FMT, OSEL and POL Bits */
    hrtc->Instance->CR &= ((uint32_t)~(RTC_CR_FMT | RTC_CR_OSEL | RTC_CR_POL));
    /* Set RTC_CR register */
    hrtc->Instance->CR |= (uint32_t)(hrtc->Init.HourFormat | hrtc->Init.OutPut | hrtc->Init.OutPutPolarity);
319

320 321 322
    /* Configure the RTC PRER */
    hrtc->Instance->PRER = (uint32_t)(hrtc->Init.SynchPrediv);
    hrtc->Instance->PRER |= (uint32_t)(hrtc->Init.AsynchPrediv << 16);
323

324
    /* Exit Initialization mode */
325 326
    hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;

327
    hrtc->Instance->OR &= (uint32_t)~RTC_OR_ALARMTYPE;
328 329
    hrtc->Instance->OR |= (uint32_t)(hrtc->Init.OutPutType);

330
    /* Enable the write protection for RTC registers */
331 332
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

333 334
    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_READY;
335

336 337 338 339 340
    return HAL_OK;
  }
}

/**
341
  * @brief  DeInitializes the RTC peripheral
342 343
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
344
  * @note   This function doesn't reset the RTC Backup Data registers.
345 346 347 348 349
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_DeInit(RTC_HandleTypeDef *hrtc)
{
  uint32_t tickstart = 0;
350

351 352 353 354
  /* Check the parameters */
  assert_param(IS_RTC_ALL_INSTANCE(hrtc->Instance));

  /* Set RTC state */
355 356
  hrtc->State = HAL_RTC_STATE_BUSY;

357 358
  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
359

360 361 362 363
  /* Set Initialization mode */
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
  {
    /* Enable the write protection for RTC registers */
364 365
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

366 367
    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_ERROR;
368

369
    return HAL_ERROR;
370
  }
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
  else
  {
    /* Reset TR, DR and CR registers */
    hrtc->Instance->TR = (uint32_t)0x00000000;
    hrtc->Instance->DR = (uint32_t)0x00002101;
    /* Reset All CR bits except CR[2:0] */
    hrtc->Instance->CR &= (uint32_t)0x00000007;

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Wait till WUTWF flag is set and if Time out is reached exit */
    while(((hrtc->Instance->ISR) & RTC_ISR_WUTWF) == (uint32_t)RESET)
    {
      if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
386
      {
387
        /* Enable the write protection for RTC registers */
388 389
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

390 391
        /* Set RTC state */
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
392

393
        return HAL_TIMEOUT;
394
      }
395
    }
396

397 398 399 400 401 402 403 404 405 406
    /* Reset all RTC CR register bits */
    hrtc->Instance->CR &= (uint32_t)0x00000000;
    hrtc->Instance->WUTR = (uint32_t)0x0000FFFF;
    hrtc->Instance->PRER = (uint32_t)0x007F00FF;
    hrtc->Instance->ALRMAR = (uint32_t)0x00000000;
    hrtc->Instance->ALRMBR = (uint32_t)0x00000000;
    hrtc->Instance->SHIFTR = (uint32_t)0x00000000;
    hrtc->Instance->CALR = (uint32_t)0x00000000;
    hrtc->Instance->ALRMASSR = (uint32_t)0x00000000;
    hrtc->Instance->ALRMBSSR = (uint32_t)0x00000000;
407

408 409
    /* Reset ISR register and exit initialization mode */
    hrtc->Instance->ISR = (uint32_t)0x00000000;
410

411 412
    /* Reset Tamper and alternate functions configuration register */
    hrtc->Instance->TAMPCR = 0x00000000;
413

414 415
    /* Reset Option register */
    hrtc->Instance->OR = 0x00000000;
416

417 418 419 420 421 422
    /* If  RTC_CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
    if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
    {
      if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
      {
        /* Enable the write protection for RTC registers */
423 424
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

425
        hrtc->State = HAL_RTC_STATE_ERROR;
426

427 428
        return HAL_ERROR;
      }
429
    }
430
  }
431

432 433
  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
434 435 436 437 438 439 440 441 442 443 444

#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
  if(hrtc->MspDeInitCallback == NULL)
  {
    hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
  }

  /* DeInit the low level hardware: CLOCK, NVIC.*/
  hrtc->MspDeInitCallback(hrtc);

#else
445 446
  /* De-Initialize RTC MSP */
  HAL_RTC_MspDeInit(hrtc);
447 448 449
#endif /* (USE_HAL_RTC_REGISTER_CALLBACKS) */

  hrtc->State = HAL_RTC_STATE_RESET;
450 451 452 453 454 455 456

  /* Release Lock */
  __HAL_UNLOCK(hrtc);

  return HAL_OK;
}

457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664
#if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
/**
  * @brief  Register a User RTC Callback
  *         To be used instead of the weak predefined callback
  * @param  hrtc RTC handle
  * @param  CallbackID ID of the callback to be registered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
  *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
  *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
  *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      Wake-Up Timer Event Callback ID
  *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
  *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
  *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
  *          @arg @ref HAL_RTC_MSPINIT_CB_ID                Msp Init callback ID
  *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID              Msp DeInit callback ID
  * @param  pCallback pointer to the Callback function
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_RegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID, pRTC_CallbackTypeDef pCallback)
{
  HAL_StatusTypeDef status = HAL_OK;

  if(pCallback == NULL)
  {
    return HAL_ERROR;
  }

  /* Process locked */
  __HAL_LOCK(hrtc);

  if(HAL_RTC_STATE_READY == hrtc->State)
  {
    switch (CallbackID)
    {
    case HAL_RTC_ALARM_A_EVENT_CB_ID :
      hrtc->AlarmAEventCallback = pCallback;
      break;

    case HAL_RTC_ALARM_B_EVENT_CB_ID :
      hrtc->AlarmBEventCallback = pCallback;
      break;

    case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
      hrtc->TimeStampEventCallback = pCallback;
      break;

    case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
      hrtc->WakeUpTimerEventCallback = pCallback;
      break;

    case HAL_RTC_TAMPER1_EVENT_CB_ID :
      hrtc->Tamper1EventCallback = pCallback;
      break;

    case HAL_RTC_TAMPER2_EVENT_CB_ID :
      hrtc->Tamper2EventCallback = pCallback;
      break;

    case HAL_RTC_TAMPER3_EVENT_CB_ID :
      hrtc->Tamper3EventCallback = pCallback;
      break;

   case HAL_RTC_MSPINIT_CB_ID :
      hrtc->MspInitCallback = pCallback;
      break;

   case HAL_RTC_MSPDEINIT_CB_ID :
      hrtc->MspDeInitCallback = pCallback;
      break;

    default :
     /* Return error status */
      status =  HAL_ERROR;
      break;
    }
  }
  else if(HAL_RTC_STATE_RESET == hrtc->State)
  {
    switch (CallbackID)
    {
    case HAL_RTC_MSPINIT_CB_ID :
      hrtc->MspInitCallback = pCallback;
      break;

   case HAL_RTC_MSPDEINIT_CB_ID :
      hrtc->MspDeInitCallback = pCallback;
      break;

    default :
     /* Return error status */
      status =  HAL_ERROR;
      break;
    }
  }
  else
  {
    /* Return error status */
    status =  HAL_ERROR;
  }

  /* Release Lock */
  __HAL_UNLOCK(hrtc);

  return status;
}

/**
  * @brief  Unregister an RTC Callback
  *         RTC callabck is redirected to the weak predefined callback
  * @param  hrtc RTC handle
  * @param  CallbackID ID of the callback to be unregistered
  *         This parameter can be one of the following values:
  *          @arg @ref HAL_RTC_ALARM_A_EVENT_CB_ID          Alarm A Event Callback ID
  *          @arg @ref HAL_RTC_ALARM_B_EVENT_CB_ID          Alarm B Event Callback ID
  *          @arg @ref HAL_RTC_TIMESTAMP_EVENT_CB_ID        TimeStamp Event Callback ID
  *          @arg @ref HAL_RTC_WAKEUPTIMER_EVENT_CB_ID      Wake-Up Timer Event Callback ID
  *          @arg @ref HAL_RTC_TAMPER1_EVENT_CB_ID          Tamper 1 Callback ID
  *          @arg @ref HAL_RTC_TAMPER2_EVENT_CB_ID          Tamper 2 Callback ID
  *          @arg @ref HAL_RTC_TAMPER3_EVENT_CB_ID          Tamper 3 Callback ID
  *          @arg @ref HAL_RTC_MSPINIT_CB_ID Msp Init callback ID
  *          @arg @ref HAL_RTC_MSPDEINIT_CB_ID Msp DeInit callback ID
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_UnRegisterCallback(RTC_HandleTypeDef *hrtc, HAL_RTC_CallbackIDTypeDef CallbackID)
{
  HAL_StatusTypeDef status = HAL_OK;

  /* Process locked */
  __HAL_LOCK(hrtc);

  if(HAL_RTC_STATE_READY == hrtc->State)
  {
    switch (CallbackID)
    {
    case HAL_RTC_ALARM_A_EVENT_CB_ID :
      hrtc->AlarmAEventCallback = HAL_RTC_AlarmAEventCallback;         /* Legacy weak AlarmAEventCallback    */
      break;

    case HAL_RTC_ALARM_B_EVENT_CB_ID :
      hrtc->AlarmBEventCallback = HAL_RTCEx_AlarmBEventCallback;          /* Legacy weak AlarmBEventCallback */
      break;

    case HAL_RTC_TIMESTAMP_EVENT_CB_ID :
      hrtc->TimeStampEventCallback = HAL_RTCEx_TimeStampEventCallback;    /* Legacy weak TimeStampEventCallback    */
      break;

    case HAL_RTC_WAKEUPTIMER_EVENT_CB_ID :
      hrtc->WakeUpTimerEventCallback = HAL_RTCEx_WakeUpTimerEventCallback; /* Legacy weak WakeUpTimerEventCallback */
      break;

    case HAL_RTC_TAMPER1_EVENT_CB_ID :
      hrtc->Tamper1EventCallback = HAL_RTCEx_Tamper1EventCallback;         /* Legacy weak Tamper1EventCallback   */
      break;

    case HAL_RTC_TAMPER2_EVENT_CB_ID :
      hrtc->Tamper2EventCallback = HAL_RTCEx_Tamper2EventCallback;         /* Legacy weak Tamper2EventCallback         */
      break;

    case HAL_RTC_TAMPER3_EVENT_CB_ID :
      hrtc->Tamper3EventCallback = HAL_RTCEx_Tamper3EventCallback;         /* Legacy weak Tamper3EventCallback         */
      break;

    case HAL_RTC_MSPINIT_CB_ID :
      hrtc->MspInitCallback = HAL_RTC_MspInit;
      break;

    case HAL_RTC_MSPDEINIT_CB_ID :
      hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
      break;

    default :
     /* Return error status */
      status =  HAL_ERROR;
      break;
    }
  }
  else if(HAL_RTC_STATE_RESET == hrtc->State)
  {
    switch (CallbackID)
    {
    case HAL_RTC_MSPINIT_CB_ID :
      hrtc->MspInitCallback = HAL_RTC_MspInit;
      break;

    case HAL_RTC_MSPDEINIT_CB_ID :
      hrtc->MspDeInitCallback = HAL_RTC_MspDeInit;
      break;

    default :
     /* Return error status */
      status =  HAL_ERROR;
      break;
    }
  }
  else
  {
    /* Return error status */
    status =  HAL_ERROR;
  }

  /* Release Lock */
  __HAL_UNLOCK(hrtc);

  return status;
}
#endif /* USE_HAL_RTC_REGISTER_CALLBACKS */

665 666 667
/**
  * @brief  Initializes the RTC MSP.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
668
  *                the configuration information for RTC.
669 670 671 672 673 674
  * @retval None
  */
__weak void HAL_RTC_MspInit(RTC_HandleTypeDef* hrtc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hrtc);
675

676 677
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_RTC_MspInit could be implemented in the user file
678
   */
679 680 681 682 683
}

/**
  * @brief  DeInitializes the RTC MSP.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
684
  *                the configuration information for RTC.
685 686 687 688 689 690
  * @retval None
  */
__weak void HAL_RTC_MspDeInit(RTC_HandleTypeDef* hrtc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hrtc);
691

692 693
  /* NOTE : This function Should not be modified, when the callback is needed,
            the HAL_RTC_MspDeInit could be implemented in the user file
694
   */
695 696 697 698 699 700 701 702 703
}

/**
  * @}
  */

/** @defgroup RTC_Group2 RTC Time and Date functions
 *  @brief   RTC Time and Date functions
 *
704
@verbatim
705 706
 ===============================================================================
                 ##### RTC Time and Date functions #####
707 708
 ===============================================================================

709 710 711 712 713 714 715 716 717 718 719 720 721
 [..] This section provides functions allowing to configure Time and Date features

@endverbatim
  * @{
  */

/**
  * @brief  Sets RTC current time.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @param  sTime Pointer to Time structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
722
  *            @arg FORMAT_BIN: Binary data format
723 724 725 726 727 728
  *            @arg FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
  uint32_t tmpreg = 0;
729

730 731 732 733
 /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_DAYLIGHT_SAVING(sTime->DayLightSaving));
  assert_param(IS_RTC_STORE_OPERATION(sTime->StoreOperation));
734 735

  /* Process Locked */
736
  __HAL_LOCK(hrtc);
737

738
  hrtc->State = HAL_RTC_STATE_BUSY;
739

740 741 742 743 744 745
  if(Format == RTC_FORMAT_BIN)
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
      assert_param(IS_RTC_HOUR12(sTime->Hours));
      assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
746
    }
747 748 749 750 751 752 753
    else
    {
      sTime->TimeFormat = 0x00;
      assert_param(IS_RTC_HOUR24(sTime->Hours));
    }
    assert_param(IS_RTC_MINUTES(sTime->Minutes));
    assert_param(IS_RTC_SECONDS(sTime->Seconds));
754

755 756 757
    tmpreg = (uint32_t)(((uint32_t)RTC_ByteToBcd2(sTime->Hours) << 16) | \
                        ((uint32_t)RTC_ByteToBcd2(sTime->Minutes) << 8) | \
                        ((uint32_t)RTC_ByteToBcd2(sTime->Seconds)) | \
758
                        (((uint32_t)sTime->TimeFormat) << 16));
759 760 761 762 763
  }
  else
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
764 765 766
      assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sTime->Hours)));
      assert_param(IS_RTC_HOURFORMAT12(sTime->TimeFormat));
    }
767 768 769 770 771 772 773 774 775 776
    else
    {
      sTime->TimeFormat = 0x00;
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sTime->Hours)));
    }
    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sTime->Minutes)));
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sTime->Seconds)));
    tmpreg = (((uint32_t)(sTime->Hours) << 16) | \
              ((uint32_t)(sTime->Minutes) << 8) | \
              ((uint32_t)sTime->Seconds) | \
777
              ((uint32_t)(sTime->TimeFormat) << 16));
778
  }
779

780 781
  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
782

783 784 785 786
  /* Set Initialization mode */
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
  {
    /* Enable the write protection for RTC registers */
787 788
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

789 790
    /* Set RTC state */
    hrtc->State = HAL_RTC_STATE_ERROR;
791 792

    /* Process Unlocked */
793
    __HAL_UNLOCK(hrtc);
794

795
    return HAL_ERROR;
796
  }
797 798 799 800
  else
  {
    /* Set the RTC_TR register */
    hrtc->Instance->TR = (uint32_t)(tmpreg & RTC_TR_RESERVED_MASK);
801

802 803
    /* Clear the bits to be configured */
    hrtc->Instance->CR &= (uint32_t)~RTC_CR_BKP;
804

805 806
    /* Configure the RTC_CR register */
    hrtc->Instance->CR |= (uint32_t)(sTime->DayLightSaving | sTime->StoreOperation);
807

808
    /* Exit Initialization mode */
809 810
    hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;

811 812 813 814
    /* If  CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
    if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
    {
      if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
815
      {
816
        /* Enable the write protection for RTC registers */
817 818
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

819
        hrtc->State = HAL_RTC_STATE_ERROR;
820 821

        /* Process Unlocked */
822
        __HAL_UNLOCK(hrtc);
823

824 825 826
        return HAL_ERROR;
      }
    }
827

828 829
    /* Enable the write protection for RTC registers */
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
830

831
   hrtc->State = HAL_RTC_STATE_READY;
832 833 834

   __HAL_UNLOCK(hrtc);

835 836 837 838 839 840 841
   return HAL_OK;
  }
}

/**
  * @brief  Gets RTC current time.
  * @param  hrtc RTC handle
842
  * @param  sTime Pointer to Time structure with Hours, Minutes and Seconds fields returned
843 844 845 846 847
  *                with input format (BIN or BCD), also SubSeconds field returning the
  *                RTC_SSR register content and SecondFraction field the Synchronous pre-scaler
  *                factor to be used for second fraction ratio computation.
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
848
  *            @arg RTC_FORMAT_BIN: Binary data format
849 850 851 852 853
  *            @arg RTC_FORMAT_BCD: BCD data format
  * @note  You can use SubSeconds and SecondFraction (sTime structure fields returned) to convert SubSeconds
  *        value in second fraction ratio with time unit following generic formula:
  *        Second fraction ratio * time_unit= [(SecondFraction-SubSeconds)/(SecondFraction+1)] * time_unit
  *        This conversion can be performed only if no shift operation is pending (ie. SHFP=0) when PREDIV_S >= SS
854
  * @note  You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
855 856 857 858 859 860 861 862 863 864 865
  *        in the higher-order calendar shadow registers to ensure consistency between the time and date values.
  *        Reading RTC current time locks the values in calendar shadow registers until Current date is read
  *        to ensure consistency between the time and date values.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_GetTime(RTC_HandleTypeDef *hrtc, RTC_TimeTypeDef *sTime, uint32_t Format)
{
  uint32_t tmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
866

867 868
  /* Get subseconds values from the correspondent registers*/
  sTime->SubSeconds = (uint32_t)(hrtc->Instance->SSR);
869

870 871 872 873
  /* Get SecondFraction structure field from the corresponding register field*/
  sTime->SecondFraction = (uint32_t)(hrtc->Instance->PRER & RTC_PRER_PREDIV_S);

  /* Get the TR register */
874 875
  tmpreg = (uint32_t)(hrtc->Instance->TR & RTC_TR_RESERVED_MASK);

876 877 878 879
  /* Fill the structure fields with the read parameters */
  sTime->Hours = (uint8_t)((tmpreg & (RTC_TR_HT | RTC_TR_HU)) >> 16);
  sTime->Minutes = (uint8_t)((tmpreg & (RTC_TR_MNT | RTC_TR_MNU)) >>8);
  sTime->Seconds = (uint8_t)(tmpreg & (RTC_TR_ST | RTC_TR_SU));
880 881
  sTime->TimeFormat = (uint8_t)((tmpreg & (RTC_TR_PM)) >> 16);

882 883 884 885 886 887
  /* Check the input parameters format */
  if(Format == RTC_FORMAT_BIN)
  {
    /* Convert the time structure parameters to Binary format */
    sTime->Hours = (uint8_t)RTC_Bcd2ToByte(sTime->Hours);
    sTime->Minutes = (uint8_t)RTC_Bcd2ToByte(sTime->Minutes);
888
    sTime->Seconds = (uint8_t)RTC_Bcd2ToByte(sTime->Seconds);
889
  }
890

891 892 893 894 895 896 897 898 899 900
  return HAL_OK;
}

/**
  * @brief  Sets RTC current date.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @param  sDate Pointer to date structure
  * @param  Format specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
901
  *            @arg RTC_FORMAT_BIN: Binary data format
902 903 904 905 906 907
  *            @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
{
  uint32_t datetmpreg = 0;
908

909 910
 /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
911 912

 /* Process Locked */
913
 __HAL_LOCK(hrtc);
914 915 916

  hrtc->State = HAL_RTC_STATE_BUSY;

917 918 919 920
  if((Format == RTC_FORMAT_BIN) && ((sDate->Month & 0x10U) == 0x10U))
  {
    sDate->Month = (uint8_t)((sDate->Month & (uint8_t)~(0x10U)) + (uint8_t)0x0AU);
  }
921

922
  assert_param(IS_RTC_WEEKDAY(sDate->WeekDay));
923

924
  if(Format == RTC_FORMAT_BIN)
925
  {
926 927
    assert_param(IS_RTC_YEAR(sDate->Year));
    assert_param(IS_RTC_MONTH(sDate->Month));
928 929
    assert_param(IS_RTC_DATE(sDate->Date));

930 931 932
   datetmpreg = (((uint32_t)RTC_ByteToBcd2(sDate->Year) << 16) | \
                 ((uint32_t)RTC_ByteToBcd2(sDate->Month) << 8) | \
                 ((uint32_t)RTC_ByteToBcd2(sDate->Date)) | \
933
                 ((uint32_t)sDate->WeekDay << 13));
934 935
  }
  else
936
  {
937
    assert_param(IS_RTC_YEAR(RTC_Bcd2ToByte(sDate->Year)));
938 939 940
    assert_param(IS_RTC_MONTH(RTC_Bcd2ToByte(sDate->Month)));
    assert_param(IS_RTC_DATE(RTC_Bcd2ToByte(sDate->Date)));

941 942 943
    datetmpreg = ((((uint32_t)sDate->Year) << 16) | \
                  (((uint32_t)sDate->Month) << 8) | \
                  ((uint32_t)sDate->Date) | \
944
                  (((uint32_t)sDate->WeekDay) << 13));
945 946 947 948
  }

  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
949

950 951 952 953
  /* Set Initialization mode */
  if(RTC_EnterInitMode(hrtc) != HAL_OK)
  {
    /* Enable the write protection for RTC registers */
954 955
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

956 957
    /* Set RTC state*/
    hrtc->State = HAL_RTC_STATE_ERROR;
958 959

    /* Process Unlocked */
960
    __HAL_UNLOCK(hrtc);
961

962
    return HAL_ERROR;
963
  }
964 965 966 967
  else
  {
    /* Set the RTC_DR register */
    hrtc->Instance->DR = (uint32_t)(datetmpreg & RTC_DR_RESERVED_MASK);
968

969
    /* Exit Initialization mode */
970 971
    hrtc->Instance->ISR &= (uint32_t)~RTC_ISR_INIT;

972 973 974 975
    /* If  CR_BYPSHAD bit = 0, wait for synchro else this check is not needed */
    if((hrtc->Instance->CR & RTC_CR_BYPSHAD) == RESET)
    {
      if(HAL_RTC_WaitForSynchro(hrtc) != HAL_OK)
976
      {
977
        /* Enable the write protection for RTC registers */
978 979
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

980
        hrtc->State = HAL_RTC_STATE_ERROR;
981 982

        /* Process Unlocked */
983
        __HAL_UNLOCK(hrtc);
984

985 986 987
        return HAL_ERROR;
      }
    }
988

989
    /* Enable the write protection for RTC registers */
990 991
    __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

992
    hrtc->State = HAL_RTC_STATE_READY ;
993 994

    /* Process Unlocked */
995
    __HAL_UNLOCK(hrtc);
996 997

    return HAL_OK;
998 999 1000 1001 1002 1003 1004 1005 1006 1007
  }
}

/**
  * @brief  Gets RTC current date.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @param  sDate Pointer to Date structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
1008
  *            @arg RTC_FORMAT_BIN:  Binary data format
1009
  *            @arg RTC_FORMAT_BCD:  BCD data format
1010
  * @note You must call HAL_RTC_GetDate() after HAL_RTC_GetTime() to unlock the values
1011 1012 1013 1014 1015 1016 1017 1018 1019 1020
  * in the higher-order calendar shadow registers to ensure consistency between the time and date values.
  * Reading RTC current time locks the values in calendar shadow registers until Current date is read.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_GetDate(RTC_HandleTypeDef *hrtc, RTC_DateTypeDef *sDate, uint32_t Format)
{
  uint32_t datetmpreg = 0;

  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
1021

1022
  /* Get the DR register */
1023
  datetmpreg = (uint32_t)(hrtc->Instance->DR & RTC_DR_RESERVED_MASK);
1024 1025 1026 1027 1028

  /* Fill the structure fields with the read parameters */
  sDate->Year = (uint8_t)((datetmpreg & (RTC_DR_YT | RTC_DR_YU)) >> 16);
  sDate->Month = (uint8_t)((datetmpreg & (RTC_DR_MT | RTC_DR_MU)) >> 8);
  sDate->Date = (uint8_t)(datetmpreg & (RTC_DR_DT | RTC_DR_DU));
1029
  sDate->WeekDay = (uint8_t)((datetmpreg & (RTC_DR_WDU)) >> 13);
1030 1031 1032

  /* Check the input parameters format */
  if(Format == RTC_FORMAT_BIN)
1033
  {
1034 1035 1036
    /* Convert the date structure parameters to Binary format */
    sDate->Year = (uint8_t)RTC_Bcd2ToByte(sDate->Year);
    sDate->Month = (uint8_t)RTC_Bcd2ToByte(sDate->Month);
1037
    sDate->Date = (uint8_t)RTC_Bcd2ToByte(sDate->Date);
1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048
  }
  return HAL_OK;
}

/**
  * @}
  */

/** @defgroup RTC_Group3 RTC Alarm functions
 *  @brief   RTC Alarm functions
 *
1049
@verbatim
1050 1051
 ===============================================================================
                 ##### RTC Alarm functions #####
1052 1053
 ===============================================================================

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065
 [..] This section provides functions allowing to configure Alarm feature

@endverbatim
  * @{
  */
/**
  * @brief  Sets the specified RTC Alarm.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @param  sAlarm Pointer to Alarm structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
1066
  *             @arg FORMAT_BIN: Binary data format
1067 1068 1069 1070 1071 1072 1073
  *             @arg FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
  uint32_t tickstart = 0;
  uint32_t tmpreg = 0, subsecondtmpreg = 0;
1074

1075 1076 1077 1078 1079 1080 1081
  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_ALARM(sAlarm->Alarm));
  assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
  assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
  assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
  assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1082 1083

  /* Process Locked */
1084
  __HAL_LOCK(hrtc);
1085

1086
  hrtc->State = HAL_RTC_STATE_BUSY;
1087

1088 1089 1090 1091 1092 1093
  if(Format == RTC_FORMAT_BIN)
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
      assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1094
    }
1095 1096 1097 1098 1099 1100 1101
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00;
      assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
    }
    assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
    assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1102

1103 1104 1105 1106 1107 1108 1109 1110
    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
    }
1111

1112 1113 1114 1115 1116 1117
    tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24) | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1118
              ((uint32_t)sAlarm->AlarmMask));
1119 1120 1121 1122 1123
  }
  else
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
1124
      assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1125
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1126
    }
1127 1128 1129 1130 1131
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00;
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
    }
1132

1133 1134
    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1135

1136 1137
    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
1138
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1139 1140 1141
    }
    else
    {
1142 1143 1144
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
    }

1145 1146 1147 1148 1149 1150
    tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16) | \
              ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8) | \
              ((uint32_t) sAlarm->AlarmTime.Seconds) | \
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16) | \
              ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24) | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1151
              ((uint32_t)sAlarm->AlarmMask));
1152
  }
1153

1154 1155
  /* Configure the Alarm A or Alarm B Sub Second registers */
  subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
1156

1157 1158 1159 1160 1161 1162 1163 1164
  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);

  /* Configure the Alarm register */
  if(sAlarm->Alarm == RTC_ALARM_A)
  {
    /* Disable the Alarm A interrupt */
    __HAL_RTC_ALARMA_DISABLE(hrtc);
1165 1166

    /* In case of interrupt mode is used, the interrupt source must disabled */
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
    while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1179 1180 1181 1182

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
1183
        __HAL_UNLOCK(hrtc);
1184

1185
        return HAL_TIMEOUT;
1186
      }
1187
    }
1188

1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
    hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
    /* Configure the Alarm A Sub Second register */
    hrtc->Instance->ALRMASSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMA_ENABLE(hrtc);
  }
  else
  {
    /* Disable the Alarm B interrupt */
    __HAL_RTC_ALARMB_DISABLE(hrtc);
1199 1200

    /* In case of interrupt mode is used, the interrupt source must disabled */
1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRB);

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
    while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1213 1214 1215 1216

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
1217
        __HAL_UNLOCK(hrtc);
1218

1219
        return HAL_TIMEOUT;
1220 1221 1222
      }
    }

1223 1224 1225 1226
    hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
    /* Configure the Alarm B Sub Second register */
    hrtc->Instance->ALRMBSSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
1227
    __HAL_RTC_ALARMB_ENABLE(hrtc);
1228
  }
1229

1230
  /* Enable the write protection for RTC registers */
1231 1232
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

1233
  /* Change RTC state */
1234 1235 1236
  hrtc->State = HAL_RTC_STATE_READY;

  /* Process Unlocked */
1237
  __HAL_UNLOCK(hrtc);
1238

1239 1240 1241 1242
  return HAL_OK;
}

/**
1243
  * @brief  Sets the specified RTC Alarm with Interrupt
1244 1245 1246 1247 1248
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @param  sAlarm Pointer to Alarm structure
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
1249
  *             @arg FORMAT_BIN: Binary data format
1250 1251
  *             @arg FORMAT_BCD: BCD data format
  * @note   The Alarm register can only be written when the corresponding Alarm
1252 1253
  *         is disabled (Use the HAL_RTC_DeactivateAlarm()).
  * @note   The HAL_RTC_SetTime() must be called before enabling the Alarm feature.
1254 1255 1256 1257 1258 1259
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_SetAlarm_IT(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Format)
{
  uint32_t tmpreg = 0U, subsecondtmpreg = 0U;
  __IO uint32_t count = RTC_TIMEOUT_VALUE  * (SystemCoreClock / 32U / 1000U) ;
1260

1261 1262 1263 1264 1265 1266 1267
  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_ALARM(sAlarm->Alarm));
  assert_param(IS_RTC_ALARM_MASK(sAlarm->AlarmMask));
  assert_param(IS_RTC_ALARM_DATE_WEEKDAY_SEL(sAlarm->AlarmDateWeekDaySel));
  assert_param(IS_RTC_ALARM_SUB_SECOND_VALUE(sAlarm->AlarmTime.SubSeconds));
  assert_param(IS_RTC_ALARM_SUB_SECOND_MASK(sAlarm->AlarmSubSecondMask));
1268 1269

  /* Process Locked */
1270
  __HAL_LOCK(hrtc);
1271

1272
  hrtc->State = HAL_RTC_STATE_BUSY;
1273

1274 1275 1276 1277 1278 1279
  if(Format == RTC_FORMAT_BIN)
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
      assert_param(IS_RTC_HOUR12(sAlarm->AlarmTime.Hours));
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1280
    }
1281 1282 1283 1284 1285 1286 1287
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(sAlarm->AlarmTime.Hours));
    }
    assert_param(IS_RTC_MINUTES(sAlarm->AlarmTime.Minutes));
    assert_param(IS_RTC_SECONDS(sAlarm->AlarmTime.Seconds));
1288

1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302
    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(sAlarm->AlarmDateWeekDay));
    }
    else
    {
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(sAlarm->AlarmDateWeekDay));
    }
    tmpreg = (((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Hours) << 16U) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Minutes) << 8U) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmTime.Seconds)) | \
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
              ((uint32_t)RTC_ByteToBcd2(sAlarm->AlarmDateWeekDay) << 24U) | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1303
              ((uint32_t)sAlarm->AlarmMask));
1304 1305 1306 1307 1308
  }
  else
  {
    if((hrtc->Instance->CR & RTC_CR_FMT) != (uint32_t)RESET)
    {
1309
      assert_param(IS_RTC_HOUR12(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
1310
      assert_param(IS_RTC_HOURFORMAT12(sAlarm->AlarmTime.TimeFormat));
1311
    }
1312 1313 1314 1315 1316
    else
    {
      sAlarm->AlarmTime.TimeFormat = 0x00U;
      assert_param(IS_RTC_HOUR24(RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours)));
    }
1317

1318 1319
    assert_param(IS_RTC_MINUTES(RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes)));
    assert_param(IS_RTC_SECONDS(RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds)));
1320

1321 1322
    if(sAlarm->AlarmDateWeekDaySel == RTC_ALARMDATEWEEKDAYSEL_DATE)
    {
1323
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_DATE(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1324 1325 1326
    }
    else
    {
1327
      assert_param(IS_RTC_ALARM_DATE_WEEKDAY_WEEKDAY(RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay)));
1328 1329 1330 1331 1332 1333 1334
    }
    tmpreg = (((uint32_t)(sAlarm->AlarmTime.Hours) << 16U) | \
              ((uint32_t)(sAlarm->AlarmTime.Minutes) << 8U) | \
              ((uint32_t) sAlarm->AlarmTime.Seconds) | \
              ((uint32_t)(sAlarm->AlarmTime.TimeFormat) << 16U) | \
              ((uint32_t)(sAlarm->AlarmDateWeekDay) << 24U) | \
              ((uint32_t)sAlarm->AlarmDateWeekDaySel) | \
1335
              ((uint32_t)sAlarm->AlarmMask));
1336 1337 1338
  }
  /* Configure the Alarm A or Alarm B Sub Second registers */
  subsecondtmpreg = (uint32_t)((uint32_t)(sAlarm->AlarmTime.SubSeconds) | (uint32_t)(sAlarm->AlarmSubSecondMask));
1339

1340 1341
  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1342

1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366
  /* Configure the Alarm register */
  if(sAlarm->Alarm == RTC_ALARM_A)
  {
    /* Disable the Alarm A interrupt */
    __HAL_RTC_ALARMA_DISABLE(hrtc);

    /* Clear flag alarm A */
    __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);

    /* Wait till RTC ALRAWF flag is set and if Time out is reached exit */
    do
    {
      if (count-- == 0U)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
1367
    }
1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET);

    hrtc->Instance->ALRMAR = (uint32_t)tmpreg;
    /* Configure the Alarm A Sub Second register */
    hrtc->Instance->ALRMASSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMA_ENABLE(hrtc);
    /* Configure the Alarm interrupt */
    __HAL_RTC_ALARM_ENABLE_IT(hrtc,RTC_IT_ALRA);
  }
  else
  {
    /* Disable the Alarm B interrupt */
    __HAL_RTC_ALARMB_DISABLE(hrtc);

    /* Clear flag alarm B */
    __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRBF);

    /* Wait till RTC ALRBWF flag is set and if Time out is reached exit */
    do
    {
      if (count-- == 0U)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
        __HAL_UNLOCK(hrtc);

        return HAL_TIMEOUT;
      }
1401
    }
1402
    while (__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET);
1403

1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414
    hrtc->Instance->ALRMBR = (uint32_t)tmpreg;
    /* Configure the Alarm B Sub Second register */
    hrtc->Instance->ALRMBSSR = subsecondtmpreg;
    /* Configure the Alarm state: Enable Alarm */
    __HAL_RTC_ALARMB_ENABLE(hrtc);
    /* Configure the Alarm interrupt */
    __HAL_RTC_ALARM_ENABLE_IT(hrtc, RTC_IT_ALRB);
  }

  /* RTC Alarm Interrupt Configuration: EXTI configuration */
  __HAL_RTC_ALARM_EXTI_ENABLE_IT();
1415

1416
  EXTI->RTSR |= RTC_EXTI_LINE_ALARM_EVENT;
1417

1418
  /* Enable the write protection for RTC registers */
1419 1420 1421 1422 1423 1424 1425
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);

  hrtc->State = HAL_RTC_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

1426 1427 1428 1429
  return HAL_OK;
}

/**
1430
  * @brief  Deactivate the specified RTC Alarm
1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @param  Alarm Specifies the Alarm.
  *          This parameter can be one of the following values:
  *            @arg RTC_ALARM_A:  AlarmA
  *            @arg RTC_ALARM_B:  AlarmB
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_DeactivateAlarm(RTC_HandleTypeDef *hrtc, uint32_t Alarm)
{
  uint32_t tickstart = 0;
1442

1443 1444
  /* Check the parameters */
  assert_param(IS_RTC_ALARM(Alarm));
1445 1446

  /* Process Locked */
1447
  __HAL_LOCK(hrtc);
1448

1449
  hrtc->State = HAL_RTC_STATE_BUSY;
1450

1451 1452
  /* Disable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_DISABLE(hrtc);
1453

1454 1455 1456 1457
  if(Alarm == RTC_ALARM_A)
  {
    /* AlarmA */
    __HAL_RTC_ALARMA_DISABLE(hrtc);
1458 1459

    /* In case of interrupt mode is used, the interrupt source must disabled */
1460 1461 1462 1463 1464 1465 1466 1467 1468
    __HAL_RTC_ALARM_DISABLE_IT(hrtc, RTC_IT_ALRA);

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
    while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAWF) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1469
      {
1470 1471
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1472 1473 1474 1475

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
1476
        __HAL_UNLOCK(hrtc);
1477

1478
        return HAL_TIMEOUT;
1479
      }
1480 1481 1482 1483 1484 1485
    }
  }
  else
  {
    /* AlarmB */
    __HAL_RTC_ALARMB_DISABLE(hrtc);
1486 1487

    /* In case of interrupt mode is used, the interrupt source must disabled */
1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
    __HAL_RTC_ALARM_DISABLE_IT(hrtc,RTC_IT_ALRB);

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Wait till RTC ALRxWF flag is set and if Time out is reached exit */
    while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRBWF) == RESET)
    {
      if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
      {
        /* Enable the write protection for RTC registers */
        __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1500 1501 1502 1503

        hrtc->State = HAL_RTC_STATE_TIMEOUT;

        /* Process Unlocked */
1504
        __HAL_UNLOCK(hrtc);
1505

1506
        return HAL_TIMEOUT;
1507
      }
1508 1509 1510 1511
    }
  }
  /* Enable the write protection for RTC registers */
  __HAL_RTC_WRITEPROTECTION_ENABLE(hrtc);
1512 1513 1514 1515 1516 1517 1518

  hrtc->State = HAL_RTC_STATE_READY;

  /* Process Unlocked */
  __HAL_UNLOCK(hrtc);

  return HAL_OK;
1519
}
1520

1521 1522 1523 1524 1525 1526 1527 1528
/**
  * @brief  Gets the RTC Alarm value and masks.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @param  sAlarm Pointer to Date structure
  * @param  Alarm Specifies the Alarm.
  *          This parameter can be one of the following values:
  *             @arg RTC_ALARM_A: AlarmA
1529
  *             @arg RTC_ALARM_B: AlarmB
1530 1531
  * @param  Format Specifies the format of the entered parameters.
  *          This parameter can be one of the following values:
1532
  *             @arg RTC_FORMAT_BIN: Binary data format
1533 1534 1535 1536 1537 1538
  *             @arg RTC_FORMAT_BCD: BCD data format
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_GetAlarm(RTC_HandleTypeDef *hrtc, RTC_AlarmTypeDef *sAlarm, uint32_t Alarm, uint32_t Format)
{
  uint32_t tmpreg = 0, subsecondtmpreg = 0;
1539

1540 1541 1542
  /* Check the parameters */
  assert_param(IS_RTC_FORMAT(Format));
  assert_param(IS_RTC_ALARM(Alarm));
1543

1544 1545 1546 1547
  if(Alarm == RTC_ALARM_A)
  {
    /* AlarmA */
    sAlarm->Alarm = RTC_ALARM_A;
1548

1549 1550 1551 1552 1553 1554
    tmpreg = (uint32_t)(hrtc->Instance->ALRMAR);
    subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMASSR ) & RTC_ALRMASSR_SS);
  }
  else
  {
    sAlarm->Alarm = RTC_ALARM_B;
1555

1556 1557 1558
    tmpreg = (uint32_t)(hrtc->Instance->ALRMBR);
    subsecondtmpreg = (uint32_t)((hrtc->Instance->ALRMBSSR) & RTC_ALRMBSSR_SS);
  }
1559

1560 1561 1562 1563 1564 1565 1566 1567 1568
  /* Fill the structure with the read parameters */
  sAlarm->AlarmTime.Hours = (uint32_t)((tmpreg & (RTC_ALRMAR_HT | RTC_ALRMAR_HU)) >> 16);
  sAlarm->AlarmTime.Minutes = (uint32_t)((tmpreg & (RTC_ALRMAR_MNT | RTC_ALRMAR_MNU)) >> 8);
  sAlarm->AlarmTime.Seconds = (uint32_t)(tmpreg & (RTC_ALRMAR_ST | RTC_ALRMAR_SU));
  sAlarm->AlarmTime.TimeFormat = (uint32_t)((tmpreg & RTC_ALRMAR_PM) >> 16);
  sAlarm->AlarmTime.SubSeconds = (uint32_t) subsecondtmpreg;
  sAlarm->AlarmDateWeekDay = (uint32_t)((tmpreg & (RTC_ALRMAR_DT | RTC_ALRMAR_DU)) >> 24);
  sAlarm->AlarmDateWeekDaySel = (uint32_t)(tmpreg & RTC_ALRMAR_WDSEL);
  sAlarm->AlarmMask = (uint32_t)(tmpreg & RTC_ALARMMASK_ALL);
1569

1570 1571 1572 1573 1574 1575
  if(Format == RTC_FORMAT_BIN)
  {
    sAlarm->AlarmTime.Hours = RTC_Bcd2ToByte(sAlarm->AlarmTime.Hours);
    sAlarm->AlarmTime.Minutes = RTC_Bcd2ToByte(sAlarm->AlarmTime.Minutes);
    sAlarm->AlarmTime.Seconds = RTC_Bcd2ToByte(sAlarm->AlarmTime.Seconds);
    sAlarm->AlarmDateWeekDay = RTC_Bcd2ToByte(sAlarm->AlarmDateWeekDay);
1576 1577
  }

1578 1579 1580 1581 1582 1583 1584 1585 1586 1587
  return HAL_OK;
}

/**
  * @brief  This function handles Alarm interrupt request.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @retval None
  */
void HAL_RTC_AlarmIRQHandler(RTC_HandleTypeDef* hrtc)
1588
{
1589 1590 1591 1592 1593
  if(__HAL_RTC_ALARM_GET_IT(hrtc, RTC_IT_ALRA))
  {
    /* Get the status of the Interrupt */
    if((uint32_t)(hrtc->Instance->CR & RTC_IT_ALRA) != (uint32_t)RESET)
    {
1594 1595 1596 1597
      /* AlarmA callback */
    #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
      hrtc->AlarmAEventCallback(hrtc);
    #else
1598
      HAL_RTC_AlarmAEventCallback(hrtc);
1599 1600
    #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */

1601 1602 1603 1604
      /* Clear the Alarm interrupt pending bit */
      __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRAF);
    }
  }
1605

1606 1607 1608 1609 1610
  if(__HAL_RTC_ALARM_GET_IT(hrtc, RTC_IT_ALRB))
  {
    /* Get the status of the Interrupt */
    if((uint32_t)(hrtc->Instance->CR & RTC_IT_ALRB) != (uint32_t)RESET)
    {
1611 1612 1613 1614
      /* AlarmB callback */
    #if (USE_HAL_RTC_REGISTER_CALLBACKS == 1)
      hrtc->AlarmBEventCallback(hrtc);
    #else
1615
      HAL_RTCEx_AlarmBEventCallback(hrtc);
1616 1617
    #endif /* USE_HAL_RTC_REGISTER_CALLBACKS */

1618 1619 1620 1621
      /* Clear the Alarm interrupt pending bit */
      __HAL_RTC_ALARM_CLEAR_FLAG(hrtc,RTC_FLAG_ALRBF);
    }
  }
1622

1623 1624
  /* Clear the EXTI's line Flag for RTC Alarm */
  __HAL_RTC_ALARM_EXTI_CLEAR_FLAG();
1625

1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639
  /* Change RTC state */
  hrtc->State = HAL_RTC_STATE_READY;
}

/**
  * @brief  Alarm A callback.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @retval None
  */
__weak void HAL_RTC_AlarmAEventCallback(RTC_HandleTypeDef *hrtc)
{
  /* Prevent unused argument(s) compilation warning */
  UNUSED(hrtc);
1640 1641

  /* NOTE : This function should not be modified, when the callback is needed,
1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654
            the HAL_RTC_AlarmAEventCallback could be implemented in the user file
   */
}

/**
  * @brief  This function handles AlarmA Polling request.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @param  Timeout Timeout duration
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_PollForAlarmAEvent(RTC_HandleTypeDef *hrtc, uint32_t Timeout)
{
1655
  uint32_t tickstart = 0;
1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670

    /* Get tick */
    tickstart = HAL_GetTick();

  while(__HAL_RTC_ALARM_GET_FLAG(hrtc, RTC_FLAG_ALRAF) == RESET)
  {
    if(Timeout != HAL_MAX_DELAY)
    {
      if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
      {
        hrtc->State = HAL_RTC_STATE_TIMEOUT;
        return HAL_TIMEOUT;
      }
    }
  }
1671

1672 1673
  /* Clear the Alarm interrupt pending bit */
  __HAL_RTC_ALARM_CLEAR_FLAG(hrtc, RTC_FLAG_ALRAF);
1674

1675
  /* Change RTC state */
1676 1677 1678
  hrtc->State = HAL_RTC_STATE_READY;

  return HAL_OK;
1679 1680 1681 1682 1683 1684
}

/**
  * @}
  */

1685 1686
/** @defgroup RTC_Group4 Peripheral Control functions
 *  @brief   Peripheral Control functions
1687
 *
1688
@verbatim
1689 1690
 ===============================================================================
                     ##### Peripheral Control functions #####
1691
 ===============================================================================
1692 1693 1694 1695 1696 1697 1698 1699 1700
    [..]
    This subsection provides functions allowing to
      (+) Wait for RTC Time and Date Synchronization

@endverbatim
  * @{
  */

/**
1701
  * @brief  Waits until the RTC Time and Date registers (RTC_TR and RTC_DR) are
1702
  *         synchronized with RTC APB clock.
1703 1704 1705 1706 1707 1708 1709 1710
  * @note   The RTC Resynchronization mode is write protected, use the
  *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
  * @note   To read the calendar through the shadow registers after Calendar
  *         initialization, calendar update or after wake-up from low power modes
  *         the software must first clear the RSF flag.
  *         The software must then wait until it is set again before reading
  *         the calendar, which means that the calendar registers have been
  *         correctly copied into the RTC_TR and RTC_DR shadow registers.
1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_RTC_WaitForSynchro(RTC_HandleTypeDef* hrtc)
{
  uint32_t tickstart = 0;

  /* Clear RSF flag */
  hrtc->Instance->ISR &= (uint32_t)RTC_RSF_MASK;

    /* Get tick */
    tickstart = HAL_GetTick();

  /* Wait the registers to be synchronised */
  while((hrtc->Instance->ISR & RTC_ISR_RSF) == (uint32_t)RESET)
  {
    if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1729
    {
1730
      return HAL_TIMEOUT;
1731
    }
1732 1733 1734 1735 1736 1737 1738 1739
  }

  return HAL_OK;
}

/**
  * @}
  */
1740 1741 1742

/** @defgroup RTC_Group5 Peripheral State functions
 *  @brief   Peripheral State functions
1743
 *
1744
@verbatim
1745 1746
 ===============================================================================
                     ##### Peripheral State functions #####
1747
 ===============================================================================
1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779
    [..]
    This subsection provides functions allowing to
      (+) Get RTC state

@endverbatim
  * @{
  */
/**
  * @brief  Returns the RTC state.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @retval HAL state
  */
HAL_RTCStateTypeDef HAL_RTC_GetState(RTC_HandleTypeDef* hrtc)
{
  return hrtc->State;
}

/**
  * @}
  */

/**
  * @brief  Enters the RTC Initialization mode.
  * @note   The RTC Initialization mode is write protected, use the
  *         __HAL_RTC_WRITEPROTECTION_DISABLE() before calling this function.
  * @param  hrtc pointer to a RTC_HandleTypeDef structure that contains
  *                the configuration information for RTC.
  * @retval HAL status
  */
HAL_StatusTypeDef RTC_EnterInitMode(RTC_HandleTypeDef* hrtc)
{
1780 1781
  uint32_t tickstart = 0;

1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794
  /* Check if the Initialization mode is set */
  if((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
  {
    /* Set the Initialization mode */
    hrtc->Instance->ISR = (uint32_t)RTC_INIT_MASK;

    /* Get tick */
    tickstart = HAL_GetTick();

    /* Wait till RTC is in INIT state and if Time out is reached exit */
    while((hrtc->Instance->ISR & RTC_ISR_INITF) == (uint32_t)RESET)
    {
      if((HAL_GetTick() - tickstart ) > RTC_TIMEOUT_VALUE)
1795
      {
1796
        return HAL_TIMEOUT;
1797
      }
1798 1799
    }
  }
1800 1801

  return HAL_OK;
1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812
}


/**
  * @brief  Converts a 2 digit decimal to BCD format.
  * @param  Value Byte to be converted
  * @retval Converted byte
  */
uint8_t RTC_ByteToBcd2(uint8_t Value)
{
  uint32_t bcdhigh = 0;
1813

1814 1815 1816 1817 1818
  while(Value >= 10)
  {
    bcdhigh++;
    Value -= 10;
  }
1819

1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848
  return  ((uint8_t)(bcdhigh << 4) | Value);
}

/**
  * @brief  Converts from 2 digit BCD to Binary.
  * @param  Value BCD value to be converted
  * @retval Converted word
  */
uint8_t RTC_Bcd2ToByte(uint8_t Value)
{
  uint32_t tmp = 0;
  tmp = ((uint8_t)(Value & (uint8_t)0xF0) >> (uint8_t)0x4) * 10;
  return (tmp + (Value & (uint8_t)0x0F));
}

/**
  * @}
  */

#endif /* HAL_RTC_MODULE_ENABLED */
/**
  * @}
  */

/**
  * @}
  */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/